RailwayDB: adaptive storage of interaction graphs

RailwayDB: adaptive storage of interaction graphs We are living in an ever more connected world, where data recording the interactions between people, software systems, and the physical world is becoming increasingly prevalent. These data often take the form of a temporally evolving graph, where entities are the vertices and the interactions between them are the edges. We call such graphs interaction graphs. Various domains, including telecommunications, transportation, and social media, depend on analytics performed on interaction graphs. The ability to efficiently support historical analysis over interaction graphs requires effective solutions for the problem of data layout on disk. This paper presents an adaptive disk layout called the railway layout for optimizing disk block storage for interaction graphs. The key idea is to divide blocks into one or more sub-blocks. Each sub-block contains the entire graph structure, but only a subset of the attributes. This improves query I/O, at the cost of increased storage overhead. We introduce optimal integer linear program (ILP) formulations for partitioning disk blocks into sub-blocks with overlapping and nonoverlapping attributes. Additionally, we present greedy heuristics that can scale better compared to the ILP alternatives, yet achieve close to optimal query I/O. We provide an implementation of the railway layout as part of RailwayDB—an open-source graph database we have developed. To demonstrate the benefits of the railway layout, we provide an extensive experimental evaluation, including model-based as well as empirical results comparing our approach to baseline alternatives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

RailwayDB: adaptive storage of interaction graphs

Loading next page...
 
/lp/springer_journal/railwaydb-adaptive-storage-of-interaction-graphs-EhYSnRZI0V
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0407-0
Publisher site
See Article on Publisher Site

Abstract

We are living in an ever more connected world, where data recording the interactions between people, software systems, and the physical world is becoming increasingly prevalent. These data often take the form of a temporally evolving graph, where entities are the vertices and the interactions between them are the edges. We call such graphs interaction graphs. Various domains, including telecommunications, transportation, and social media, depend on analytics performed on interaction graphs. The ability to efficiently support historical analysis over interaction graphs requires effective solutions for the problem of data layout on disk. This paper presents an adaptive disk layout called the railway layout for optimizing disk block storage for interaction graphs. The key idea is to divide blocks into one or more sub-blocks. Each sub-block contains the entire graph structure, but only a subset of the attributes. This improves query I/O, at the cost of increased storage overhead. We introduce optimal integer linear program (ILP) formulations for partitioning disk blocks into sub-blocks with overlapping and nonoverlapping attributes. Additionally, we present greedy heuristics that can scale better compared to the ILP alternatives, yet achieve close to optimal query I/O. We provide an implementation of the railway layout as part of RailwayDB—an open-source graph database we have developed. To demonstrate the benefits of the railway layout, we provide an extensive experimental evaluation, including model-based as well as empirical results comparing our approach to baseline alternatives.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off