RADseq approaches and applications for forest tree genetics

RADseq approaches and applications for forest tree genetics As tree species vary extensively in genome size, complexity, and resource development, reduced representation methods have been increasingly employed for the generation of population genomic data. By allowing rapid marker discovery and genotyping for thousands of genomic regions in many individuals without requiring genomic resources, restriction site-associated DNA sequencing (RADseq) methods have dramatically improved our ability to bring population genomic perspectives to non-model trees. The rapid recent increase in studies of trees utilizing RADseq suggests that it is likely to become among the most common approaches for generating genome-wide data for a variety of applications. Here we provide a practical review of RADseq and its application to research areas of tree genetics. We briefly review RADseq laboratory methods and consider analytical approaches for assembly, variant calling, and bioinformatic processing. To guide considerations for study design, we use in silico analyses of eight available tree genomes to illustrate how expected marker number and density vary across laboratory approaches and genome sizes, and to consider the ability of RADseq designs to query coding regions. We review the empirical use of RADseq for different research objectives, considering its strengths and limitations. Many studies have used RADseq data to perform genome scans for selection, although limited marker density and linkage disequilibrium will often compromise its utility for such analyses. Regardless of this limitation, RADseq offers a powerful and inexpensive technique for generating genome-wide SNP data that can greatly contribute to research spanning phylogenetic and population genetic inference, linkage mapping, and quantitative genetic parameter estimation for tree genetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Genetics & Genomes Springer Journals

RADseq approaches and applications for forest tree genetics

Loading next page...
 
/lp/springer_journal/radseq-approaches-and-applications-for-forest-tree-genetics-xbnG0BUcop
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Forestry; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
ISSN
1614-2942
eISSN
1614-2950
D.O.I.
10.1007/s11295-018-1251-3
Publisher site
See Article on Publisher Site

Abstract

As tree species vary extensively in genome size, complexity, and resource development, reduced representation methods have been increasingly employed for the generation of population genomic data. By allowing rapid marker discovery and genotyping for thousands of genomic regions in many individuals without requiring genomic resources, restriction site-associated DNA sequencing (RADseq) methods have dramatically improved our ability to bring population genomic perspectives to non-model trees. The rapid recent increase in studies of trees utilizing RADseq suggests that it is likely to become among the most common approaches for generating genome-wide data for a variety of applications. Here we provide a practical review of RADseq and its application to research areas of tree genetics. We briefly review RADseq laboratory methods and consider analytical approaches for assembly, variant calling, and bioinformatic processing. To guide considerations for study design, we use in silico analyses of eight available tree genomes to illustrate how expected marker number and density vary across laboratory approaches and genome sizes, and to consider the ability of RADseq designs to query coding regions. We review the empirical use of RADseq for different research objectives, considering its strengths and limitations. Many studies have used RADseq data to perform genome scans for selection, although limited marker density and linkage disequilibrium will often compromise its utility for such analyses. Regardless of this limitation, RADseq offers a powerful and inexpensive technique for generating genome-wide SNP data that can greatly contribute to research spanning phylogenetic and population genetic inference, linkage mapping, and quantitative genetic parameter estimation for tree genetics.

Journal

Tree Genetics & GenomesSpringer Journals

Published: May 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off