Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

RADseq approaches and applications for forest tree genetics

RADseq approaches and applications for forest tree genetics As tree species vary extensively in genome size, complexity, and resource development, reduced representation methods have been increasingly employed for the generation of population genomic data. By allowing rapid marker discovery and genotyping for thousands of genomic regions in many individuals without requiring genomic resources, restriction site-associated DNA sequencing (RADseq) methods have dramatically improved our ability to bring population genomic perspectives to non-model trees. The rapid recent increase in studies of trees utilizing RADseq suggests that it is likely to become among the most common approaches for generating genome-wide data for a variety of applications. Here we provide a practical review of RADseq and its application to research areas of tree genetics. We briefly review RADseq laboratory methods and consider analytical approaches for assembly, variant calling, and bioinformatic processing. To guide considerations for study design, we use in silico analyses of eight available tree genomes to illustrate how expected marker number and density vary across laboratory approaches and genome sizes, and to consider the ability of RADseq designs to query coding regions. We review the empirical use of RADseq for different research objectives, considering its strengths and limitations. Many studies have used RADseq data to perform genome scans for selection, although limited marker density and linkage disequilibrium will often compromise its utility for such analyses. Regardless of this limitation, RADseq offers a powerful and inexpensive technique for generating genome-wide SNP data that can greatly contribute to research spanning phylogenetic and population genetic inference, linkage mapping, and quantitative genetic parameter estimation for tree genetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Genetics & Genomes Springer Journals

RADseq approaches and applications for forest tree genetics

Loading next page...
 
/lp/springer_journal/radseq-approaches-and-applications-for-forest-tree-genetics-xbnG0BUcop
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Forestry; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
ISSN
1614-2942
eISSN
1614-2950
DOI
10.1007/s11295-018-1251-3
Publisher site
See Article on Publisher Site

Abstract

As tree species vary extensively in genome size, complexity, and resource development, reduced representation methods have been increasingly employed for the generation of population genomic data. By allowing rapid marker discovery and genotyping for thousands of genomic regions in many individuals without requiring genomic resources, restriction site-associated DNA sequencing (RADseq) methods have dramatically improved our ability to bring population genomic perspectives to non-model trees. The rapid recent increase in studies of trees utilizing RADseq suggests that it is likely to become among the most common approaches for generating genome-wide data for a variety of applications. Here we provide a practical review of RADseq and its application to research areas of tree genetics. We briefly review RADseq laboratory methods and consider analytical approaches for assembly, variant calling, and bioinformatic processing. To guide considerations for study design, we use in silico analyses of eight available tree genomes to illustrate how expected marker number and density vary across laboratory approaches and genome sizes, and to consider the ability of RADseq designs to query coding regions. We review the empirical use of RADseq for different research objectives, considering its strengths and limitations. Many studies have used RADseq data to perform genome scans for selection, although limited marker density and linkage disequilibrium will often compromise its utility for such analyses. Regardless of this limitation, RADseq offers a powerful and inexpensive technique for generating genome-wide SNP data that can greatly contribute to research spanning phylogenetic and population genetic inference, linkage mapping, and quantitative genetic parameter estimation for tree genetics.

Journal

Tree Genetics & GenomesSpringer Journals

Published: May 21, 2018

References