Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations

Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems:... We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Society for Mass Spectrometry Springer Journals

Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations

Loading next page...
 
/lp/springer_journal/radical-rearrangement-chemistry-in-ultraviolet-photodissociation-of-tf98T0LTlZ

References (54)

Publisher
Springer Journals
Copyright
Copyright © 2018 by American Society for Mass Spectrometry
Subject
Chemistry; Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics
ISSN
1044-0305
eISSN
1879-1123
DOI
10.1007/s13361-018-1959-1
Publisher site
See Article on Publisher Site

Abstract

We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these.

Journal

Journal of the American Society for Mass SpectrometrySpringer Journals

Published: May 29, 2018

There are no references for this article.