Radiation Energetics of the Ocean–Atmosphere System and the Earth Derived from Satellite Data

Radiation Energetics of the Ocean–Atmosphere System and the Earth Derived from Satellite Data Within the framework of a correct model, by using long-term satellite information, we study the relations “radiation–cloudiness,” which are the most important characteristics of energy redistribution between the ocean and the atmosphere. They determine the spatial, seasonal, and interannual oscillations of solar and long-wave radiation in these media and stimulate circulation processes. The annual radiation regime of land and polar oceanic areas shows the present tendency towards global warming. On the average for a year, the radiation budget of the ocean–atmosphere system for the latitudinal zone between 63°N–63°S is stable towards significant variations of the conditions of cloudiness. In this region, the World Ocean acts as a factor stabilizing the global climate. The Earth represents a self-regulating system at the present stage of its evolution, and its climate varies slightly according to certain cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Radiation Energetics of the Ocean–Atmosphere System and the Earth Derived from Satellite Data

Loading next page...
 
/lp/springer_journal/radiation-energetics-of-the-ocean-atmosphere-system-and-the-earth-kF1DZnSIEj
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1023/A:1020156227906
Publisher site
See Article on Publisher Site

Abstract

Within the framework of a correct model, by using long-term satellite information, we study the relations “radiation–cloudiness,” which are the most important characteristics of energy redistribution between the ocean and the atmosphere. They determine the spatial, seasonal, and interannual oscillations of solar and long-wave radiation in these media and stimulate circulation processes. The annual radiation regime of land and polar oceanic areas shows the present tendency towards global warming. On the average for a year, the radiation budget of the ocean–atmosphere system for the latitudinal zone between 63°N–63°S is stable towards significant variations of the conditions of cloudiness. In this region, the World Ocean acts as a factor stabilizing the global climate. The Earth represents a self-regulating system at the present stage of its evolution, and its climate varies slightly according to certain cycles.

Journal

Physical OceanographySpringer Journals

Published: Oct 21, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off