RA68 is required for postmeiotic pollen development in Oryza sativa

RA68 is required for postmeiotic pollen development in Oryza sativa Postmeiotic development is a unique characteristic of flowering plants. During the development, microspores undergo two cycles of mitosis (PMI and PMII) and a subsequent maturation process to finally produce the mature pollen, but the mechanism underlying the development is still largely unknown. Here, we report on the roles of a novel gene, RA68, in postmeiotic pollen development in Oryza sativa. RA68 was expressed preferentially in shoots and flowers. In flowers, the transcript persisted from the floral organ differentiation to the mature pollen stages and showed preferential accumulation in male meiocytes, developing pollen and tapetal cells. RA68-deficient RNAi lines showed reduced seed setting and pollen viability but not an aberrant phenotype in vegetative organs. Knockdown of RA68 led to arrested PMI, smaller pollen grains with little or no starch, and aborted pollen but not severely distruped male meiosis. Additionally, no abnormality of anther wall development was observed in RA68-RNAi lines. RA68 may be required for postmeiotic pollen development by affecting PMI and starch accumulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RA68 is required for postmeiotic pollen development in Oryza sativa

Loading next page...
 
/lp/springer_journal/ra68-is-required-for-postmeiotic-pollen-development-in-oryza-sativa-NsR9AY8w51
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9566-y
Publisher site
See Article on Publisher Site

Abstract

Postmeiotic development is a unique characteristic of flowering plants. During the development, microspores undergo two cycles of mitosis (PMI and PMII) and a subsequent maturation process to finally produce the mature pollen, but the mechanism underlying the development is still largely unknown. Here, we report on the roles of a novel gene, RA68, in postmeiotic pollen development in Oryza sativa. RA68 was expressed preferentially in shoots and flowers. In flowers, the transcript persisted from the floral organ differentiation to the mature pollen stages and showed preferential accumulation in male meiocytes, developing pollen and tapetal cells. RA68-deficient RNAi lines showed reduced seed setting and pollen viability but not an aberrant phenotype in vegetative organs. Knockdown of RA68 led to arrested PMI, smaller pollen grains with little or no starch, and aborted pollen but not severely distruped male meiosis. Additionally, no abnormality of anther wall development was observed in RA68-RNAi lines. RA68 may be required for postmeiotic pollen development by affecting PMI and starch accumulation.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 4, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off