R-ISSR-for fingerprinting, mapping and identification of new genomic loci in rye (Secale cereale L.)

R-ISSR-for fingerprinting, mapping and identification of new genomic loci in rye (Secale cereale L.) The results of the research confirming the possibility of applying various combinations of RAPD and ISSR primers in one multiplex PCR and the generation of a new type of R-ISSR products for the rye genome were presented in this work. The following was applied in the research: five rye genotypes including two inbred lines (153/79-1 and Ot1-3), hybrid F1 and two bulks (tolerant and susceptible) formed from recombinant inbred lines—RILs (F9) varying in the response to abiotic stress caused by nutrient deficiencies at the seedling stage. While evaluating the possibility of applying R-ISSR to the assessment of the rye variability, five of its genotypes were amplified separately with the RAPD and ISSR primers in each PCR reaction. These primers were combined in R-ISSR amplifications. The products of RAPD, ISSR and R-ISSR amplification were separated in 1.5% agarose gel. 32 R-ISSR combinations were examined, combining 20 and 8 selected RAPD and ISSR primers, respectively. 658 loci were amplified, including 230 RAPD, 180 ISSR and 271 R-ISSR, including 157 new loci. Over 91 loci were found, with an identical electrophoretic mobility for three methods. It was shown that R-ISSR products with electrophoretic mobility on agarose gels, identical to the co-migrating RAPD or ISSR, are not products of RAPD or ISSR, but they possess sequences of heteroamplicons—R-ISSR. The occurrence of sequences of primers used to R-ISSR was demonstrated while sequencing seven selected products of the above type. The ISSR primers with a low T m were proven to generate repeatable fingerprints in the thermal profile of the reaction specific for RAPD and combined with the RAPD primer—repeatable R-ISSR profiles. A similar range of variability as described in RAPD or ISSR was observed in the R-ISSR profiles. The correlation coefficient between genetic similarity matrices for five rye genotypes, calculated with the Mantel test, amounted to r AB.C = 0.870. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

R-ISSR-for fingerprinting, mapping and identification of new genomic loci in rye (Secale cereale L.)

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2013 by Pleiades Publishing, Ltd.
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial