QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize

QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of... In-season nitrogen (N) management of irrigated maize (Zea mays L.) requires frequent acquisition of plant N status estimates to timely assess the onset of crop N deficiency and its spatial variability within a field. This study compared ground-based Exotech nadir-view sensor data and QuickBird satellite multi-spectral data to evaluate several green waveband vegetation indices to assess the N status of irrigated maize. It also sought to determine if QuickBird multi-spectral imagery could be used to develop plant N status maps as accurately as those produced by ground-based sensor systems. The green normalized difference vegetation index normalized to a reference area (NGNDVI) clustered the data for three clear-day data acquisitions between QuickBird and Exotech data producing slopes and intercepts statistically not different from 1 and 0, respectively, for the individual days as well as for the combined data. Comparisons of NGNDVI and the N Sufficiency Index produced good correlation coefficients that ranged from 0.91 to 0.95 for the V12 and V15 maize growth stages and their combined data. Nitrogen sufficiency maps based on the NGNDVI to indicate N sufficient (≥0.96) or N deficient (<0.96) maize were similar for the two sensor systems. A quantitative assessment of these N sufficiency maps for the V10–V15 crop growth stages ranged from 79 to 83% similarity based on areal agreement and moderate to substantial agreement based on the kappa statistics. Results from our study indicate that QuickBird satellite multi-spectral data can be used to assess irrigated maize N status at the V12 and later growth stages and its variability within a field for in-season N management. The NGNDVI compensated for large off-nadir and changing target azimuth view angles associated with frequent QuickBird acquisitions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize

Loading next page...
 
/lp/springer_journal/quickbird-satellite-versus-ground-based-multi-spectral-data-for-5RwemlcCKH
Publisher
Springer US
Copyright
Copyright © 2009 by US Government
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9133-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial