Quantum walk in terms of quantum Bernoulli noises

Quantum walk in terms of quantum Bernoulli noises Quantum Bernoulli noises are the family of annihilation and creation operators acting on Bernoulli functionals, which satisfy a canonical anti-commutation relation in equal time. In this paper, we first present some new results concerning quantum Bernoulli noises, which themselves are interesting. Then, based on these new results, we construct a time-dependent quantum walk with infinitely many degrees of freedom. We prove that the walk has a unitary representation and hence belongs to the category of the so-called unitary quantum walks. We examine its distribution property at the vacuum initial state and some other initial states and find that it has the same limit distribution as the classical random walk, which contrasts sharply with the case of the usual quantum walks with finite degrees of freedom. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum walk in terms of quantum Bernoulli noises

Loading next page...
 
/lp/springer_journal/quantum-walk-in-terms-of-quantum-bernoulli-noises-2zeAIPZwbt
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1259-2
Publisher site
See Article on Publisher Site

Abstract

Quantum Bernoulli noises are the family of annihilation and creation operators acting on Bernoulli functionals, which satisfy a canonical anti-commutation relation in equal time. In this paper, we first present some new results concerning quantum Bernoulli noises, which themselves are interesting. Then, based on these new results, we construct a time-dependent quantum walk with infinitely many degrees of freedom. We prove that the walk has a unitary representation and hence belongs to the category of the so-called unitary quantum walks. We examine its distribution property at the vacuum initial state and some other initial states and find that it has the same limit distribution as the classical random walk, which contrasts sharply with the case of the usual quantum walks with finite degrees of freedom.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 11, 2016

References

  • Limit measure of inhomogeneous discrete-time quantum walks in one dimension
    Konno, N; Luczak, T; Segawa, E

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off