Quantum operations on charge qubits with the electrostatic control in semiconductor cavities

Quantum operations on charge qubits with the electrostatic control in semiconductor cavities We consider one- and two-qubit operations on charge qubits that represent double quantum dots with one electron in each of them. The dots are formed inside a high-Q semiconductor cavity (disk, toroidal, or spherical) in the antinodes of one of its optical eigenmodes; the frequencies of the transitions between the ground (logic) and excited (auxiliary) states of the discrete electron spectrum in quantum dots are close to the frequency of this mode. The precise tuning of the transition frequency is performed by applying an electric potential on the qubit control gate. Within the model of qubits coherently interacting with a cavity quantum field, a few methods for controlling their states are developed. In particular, we propose different variants for implementing two-qubit CNOT and CZ gates and generating qubit entangled states. By the example of a micro-disk cavity, we calculate the operating characteristics that ensure a high rate of quantum gate implementation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Quantum operations on charge qubits with the electrostatic control in semiconductor cavities

Loading next page...
 
/lp/springer_journal/quantum-operations-on-charge-qubits-with-the-electrostatic-control-in-w7B0ybbVcx
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739713040070
Publisher site
See Article on Publisher Site

Abstract

We consider one- and two-qubit operations on charge qubits that represent double quantum dots with one electron in each of them. The dots are formed inside a high-Q semiconductor cavity (disk, toroidal, or spherical) in the antinodes of one of its optical eigenmodes; the frequencies of the transitions between the ground (logic) and excited (auxiliary) states of the discrete electron spectrum in quantum dots are close to the frequency of this mode. The precise tuning of the transition frequency is performed by applying an electric potential on the qubit control gate. Within the model of qubits coherently interacting with a cavity quantum field, a few methods for controlling their states are developed. In particular, we propose different variants for implementing two-qubit CNOT and CZ gates and generating qubit entangled states. By the example of a micro-disk cavity, we calculate the operating characteristics that ensure a high rate of quantum gate implementation.

Journal

Russian MicroelectronicsSpringer Journals

Published: Jul 13, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off