Quantum Oblivious Transfer: a secure practical implementation

Quantum Oblivious Transfer: a secure practical implementation Together with bit commitment, Oblivious Transfer is a very useful cryptographic primitive with important applications, most notably in secure multiparty computations. It has been long known that secure Quantum Oblivious Transfer can be achieved from a secure implementation of Quantum Bit Commitment. Unfortunately, it is also well known that unconditionally secure Quantum Bit Commitment is impossible, so building a secure Oblivious Transfer protocol on top of Quantum Bit Commitment is ruled out. In this paper, we propose a relatively simple quantum protocol for Oblivious Transfer which does not require qubit storage, does not rely on bit commitment as a primitive and is easily implementable with current technology, if the two actors are honest. The protocol is proven to be secure against any individual measurements and entanglement-based attacks. Any cheating attempt trying to speculate collective measurements would be considerably difficult to put in practice, even in the near future. Furthermore, the number of qubits used in our scheme (embodied as photons in a physical realization of the protocol) acts as a security parameter, making it increasingly hard to cheat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum Oblivious Transfer: a secure practical implementation

Loading next page...
 
/lp/springer_journal/quantum-oblivious-transfer-a-secure-practical-implementation-YNyFr5kGXz
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1438-1
Publisher site
See Article on Publisher Site

Abstract

Together with bit commitment, Oblivious Transfer is a very useful cryptographic primitive with important applications, most notably in secure multiparty computations. It has been long known that secure Quantum Oblivious Transfer can be achieved from a secure implementation of Quantum Bit Commitment. Unfortunately, it is also well known that unconditionally secure Quantum Bit Commitment is impossible, so building a secure Oblivious Transfer protocol on top of Quantum Bit Commitment is ruled out. In this paper, we propose a relatively simple quantum protocol for Oblivious Transfer which does not require qubit storage, does not rely on bit commitment as a primitive and is easily implementable with current technology, if the two actors are honest. The protocol is proven to be secure against any individual measurements and entanglement-based attacks. Any cheating attempt trying to speculate collective measurements would be considerably difficult to put in practice, even in the near future. Furthermore, the number of qubits used in our scheme (embodied as photons in a physical realization of the protocol) acts as a security parameter, making it increasingly hard to cheat.

Journal

Quantum Information ProcessingSpringer Journals

Published: Sep 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off