Quantum leader election

Quantum leader election A group of n individuals $$A_{1},\ldots A_{n}$$ A 1 , … A n who do not trust each other and are located far away from each other, want to select a leader. This is the leader election problem, a natural extension of the coin flipping problem to n players. We want a protocol which will guarantee that an honest player will have at least $$\frac{1}{n}-\epsilon $$ 1 n - ϵ chance of winning ( $$\forall \epsilon >0$$ ∀ ϵ > 0 ), regardless of what the other players do (whether they are honest, cheating alone or in groups). It is known to be impossible classically. This work gives a simple algorithm that does it, based on the weak coin flipping protocol with arbitrarily small bias derived by Mochon (Quantum weak coin flipping with arbitrarily small bias, arXiv:0711.4114 , 2000) in 2007, and recently published and simplified in Aharonov et al. (SIAM J Comput, 2016). A protocol with linear number of coin flipping rounds is quite simple to achieve; we further provide an improvement to logarithmic number of coin flipping rounds. This is a much improved journal version of a preprint posted in 2009; the first protocol with linear number of rounds was achieved independently also by Aharon and Silman (New J Phys 12:033027, 2010) around the same time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum leader election

Loading next page...
 
/lp/springer_journal/quantum-leader-election-K60So4OxW7
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1528-8
Publisher site
See Article on Publisher Site

Abstract

A group of n individuals $$A_{1},\ldots A_{n}$$ A 1 , … A n who do not trust each other and are located far away from each other, want to select a leader. This is the leader election problem, a natural extension of the coin flipping problem to n players. We want a protocol which will guarantee that an honest player will have at least $$\frac{1}{n}-\epsilon $$ 1 n - ϵ chance of winning ( $$\forall \epsilon >0$$ ∀ ϵ > 0 ), regardless of what the other players do (whether they are honest, cheating alone or in groups). It is known to be impossible classically. This work gives a simple algorithm that does it, based on the weak coin flipping protocol with arbitrarily small bias derived by Mochon (Quantum weak coin flipping with arbitrarily small bias, arXiv:0711.4114 , 2000) in 2007, and recently published and simplified in Aharonov et al. (SIAM J Comput, 2016). A protocol with linear number of coin flipping rounds is quite simple to achieve; we further provide an improvement to logarithmic number of coin flipping rounds. This is a much improved journal version of a preprint posted in 2009; the first protocol with linear number of rounds was achieved independently also by Aharon and Silman (New J Phys 12:033027, 2010) around the same time.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off