Quantum interference of photons in simple networks

Quantum interference of photons in simple networks A theoretical investigation of quantum interference of photonic multistates in simple devices like beam splitters, Mach–Zehnder interferometers and double-loop devices are presented. Variable transmission and reflection coefficients as well as variable phase shifts are included in order to calculate quantum states and mean photon numbers at the outputs. Various input states like Fock states and coherent states and a combination of both are considered as well as squeezed states. Two methods are applied: The direct matrix method and the method of unitary representation. Remarkable results appear in a double-loop interferometer where for special phase shifts equal mean photon numbers in the three output ports are obtained provided certain input states are given. A computerized simulation of general networks using various input Fock states is presented. Multistate devices will be used in future linear quantum computation and quantum information processing schemes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum interference of photons in simple networks

Loading next page...
 
/lp/springer_journal/quantum-interference-of-photons-in-simple-networks-Qv4dZufY8a
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0479-3
Publisher site
See Article on Publisher Site

Abstract

A theoretical investigation of quantum interference of photonic multistates in simple devices like beam splitters, Mach–Zehnder interferometers and double-loop devices are presented. Variable transmission and reflection coefficients as well as variable phase shifts are included in order to calculate quantum states and mean photon numbers at the outputs. Various input states like Fock states and coherent states and a combination of both are considered as well as squeezed states. Two methods are applied: The direct matrix method and the method of unitary representation. Remarkable results appear in a double-loop interferometer where for special phase shifts equal mean photon numbers in the three output ports are obtained provided certain input states are given. A computerized simulation of general networks using various input Fock states is presented. Multistate devices will be used in future linear quantum computation and quantum information processing schemes.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 7, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off