Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations

Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image... A new quantum image encryption scheme is suggested by using the iterative generalized Arnold transforms and the quantum image cycle shift operations. The times of the quantum image cycle shift operations are controlled by a hyper-chaotic sequence generated by a new 4D hyper-chaotic system. The image pixels are scrambled by the iterative generalized Arnold transform, and the values of the pixels are altered by the quantum image cycle shift operations. The four initial conditions of the new 4D hyper-chaotic system are exploited to control the two parameters, the iterative rounds of the generalized Arnold transform and the times of the quantum image cycle shift operations, respectively. Thus, the main keys of the proposed quantum image encryption scheme are the four initial conditions of the new 4D hyper-chaotic system and the key space is relatively large enough. Simulation results and theoretical analyses demonstrate that the proposed quantum image encryption scheme outperforms its classical counterparts apparently. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations

Loading next page...
 
/lp/springer_journal/quantum-image-encryption-scheme-with-iterative-generalized-arnold-5xSHwWa0ye
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1612-0
Publisher site
See Article on Publisher Site

Abstract

A new quantum image encryption scheme is suggested by using the iterative generalized Arnold transforms and the quantum image cycle shift operations. The times of the quantum image cycle shift operations are controlled by a hyper-chaotic sequence generated by a new 4D hyper-chaotic system. The image pixels are scrambled by the iterative generalized Arnold transform, and the values of the pixels are altered by the quantum image cycle shift operations. The four initial conditions of the new 4D hyper-chaotic system are exploited to control the two parameters, the iterative rounds of the generalized Arnold transform and the times of the quantum image cycle shift operations, respectively. Thus, the main keys of the proposed quantum image encryption scheme are the four initial conditions of the new 4D hyper-chaotic system and the key space is relatively large enough. Simulation results and theoretical analyses demonstrate that the proposed quantum image encryption scheme outperforms its classical counterparts apparently.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off