Quantum filtering for systems driven by fields in single photon states and superposition of coherent states using non-Markovian embeddings

Quantum filtering for systems driven by fields in single photon states and superposition of... The purpose of this paper is to determine quantum master and filter equations for systems coupled to fields in certain non-classical continuous-mode states. Specifically, we consider two types of field states (i) single photon states, and (ii) superpositions of coherent states. The system and field are described using a quantum stochastic unitary model. Master equations are derived from this model and are given in terms of systems of coupled equations. The output field carries information about the system, and is continuously monitored. The quantum filters are determined with the aid of an embedding of the system into a larger non-Markovian system, and are given by a system of coupled stochastic differential equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum filtering for systems driven by fields in single photon states and superposition of coherent states using non-Markovian embeddings

Loading next page...
 
/lp/springer_journal/quantum-filtering-for-systems-driven-by-fields-in-single-photon-states-1BwFT1cP6K
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0373-z
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to determine quantum master and filter equations for systems coupled to fields in certain non-classical continuous-mode states. Specifically, we consider two types of field states (i) single photon states, and (ii) superpositions of coherent states. The system and field are described using a quantum stochastic unitary model. Master equations are derived from this model and are given in terms of systems of coupled equations. The output field carries information about the system, and is continuously monitored. The quantum filters are determined with the aid of an embedding of the system into a larger non-Markovian system, and are given by a system of coupled stochastic differential equations.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 13, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off