Quantum discord of states arising from graphs

Quantum discord of states arising from graphs Quantum discord refers to an important aspect of quantum correlations for bipartite quantum systems. In our earlier works, we have shown that corresponding to every graph (combinatorial) there are quantum states whose properties are reflected in the structure of the corresponding graph. Here, we attempt to develop a graph theoretic study of quantum discord that corresponds to a necessary and sufficient condition of zero quantum discord states which says that the blocks of density matrix corresponding to a zero quantum discord state are normal and commute with each other. These blocks have a one-to-one correspondence with some specific subgraphs of the graph which represents the quantum state. We obtain a number of graph theoretic properties representing normality and commutativity of a set of matrices which are indeed arising from the given graph. Utilizing these properties, we define graph theoretic measures for normality and commutativity that results in a formulation of graph theoretic quantum discord. We identify classes of quantum states with zero discord using the developed formulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum discord of states arising from graphs

Loading next page...
 
/lp/springer_journal/quantum-discord-of-states-arising-from-graphs-HxetLgqBd3
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1636-5
Publisher site
See Article on Publisher Site

Abstract

Quantum discord refers to an important aspect of quantum correlations for bipartite quantum systems. In our earlier works, we have shown that corresponding to every graph (combinatorial) there are quantum states whose properties are reflected in the structure of the corresponding graph. Here, we attempt to develop a graph theoretic study of quantum discord that corresponds to a necessary and sufficient condition of zero quantum discord states which says that the blocks of density matrix corresponding to a zero quantum discord state are normal and commute with each other. These blocks have a one-to-one correspondence with some specific subgraphs of the graph which represents the quantum state. We obtain a number of graph theoretic properties representing normality and commutativity of a set of matrices which are indeed arising from the given graph. Utilizing these properties, we define graph theoretic measures for normality and commutativity that results in a formulation of graph theoretic quantum discord. We identify classes of quantum states with zero discord using the developed formulation.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off