Quantum correlation swapping

Quantum correlation swapping Quantum correlations (QCs), including quantum entanglement and those different, are important quantum resources and have attracted much attention recently. Quantum entanglement swapping as a kernel technique has already been applied to quantum repeaters for successfully generating long-distance shared maximally entangled qubit states. Long-distance shared QCs containing shared entanglements are useful and important for some quantum information processing in future quantum networks. In this paper, the concept of quantum entanglement repeater is extended to that of QC repeater by generalizing quantum entanglement swapping to QC swapping. Specifically, the swapping of QCs in a pair of Werner states through a local bipartite von Neumann measurement is treated. Four different QC measures, i.e., entanglement of formation (William in Phys Rev Lett 80:2245, 1998), quantum discord (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008) and ameliorated MID (Girolami et al. in J Phys A 44:352002, 2011), are employed to characterize and quantify QCs. Properties and thresholds of all QCs which occur in the swapping process are revealed, and two different phenomena are exposed and explained. It is found that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed; however, its amount cannot exceed the minimum one among the QCs in the two initial states and in the measuring state as far as the four quantifiers are concerned. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals
Loading next page...
 
/lp/springer_journal/quantum-correlation-swapping-wxYzyxdr93
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0875-y
Publisher site
See Article on Publisher Site

Abstract

Quantum correlations (QCs), including quantum entanglement and those different, are important quantum resources and have attracted much attention recently. Quantum entanglement swapping as a kernel technique has already been applied to quantum repeaters for successfully generating long-distance shared maximally entangled qubit states. Long-distance shared QCs containing shared entanglements are useful and important for some quantum information processing in future quantum networks. In this paper, the concept of quantum entanglement repeater is extended to that of QC repeater by generalizing quantum entanglement swapping to QC swapping. Specifically, the swapping of QCs in a pair of Werner states through a local bipartite von Neumann measurement is treated. Four different QC measures, i.e., entanglement of formation (William in Phys Rev Lett 80:2245, 1998), quantum discord (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008) and ameliorated MID (Girolami et al. in J Phys A 44:352002, 2011), are employed to characterize and quantify QCs. Properties and thresholds of all QCs which occur in the swapping process are revealed, and two different phenomena are exposed and explained. It is found that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed; however, its amount cannot exceed the minimum one among the QCs in the two initial states and in the measuring state as far as the four quantifiers are concerned.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 14, 2014

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A; Podolsky, B; Rosen, N
  • Can quantum-mechanical description of physical reality be considered complete?
    Bohr, N
  • Perfect teleportation of arbitrary n-qudit states using different quantum channels
    Zhang, ZJ; Liu, YM
  • Geometric measure of quantum discord
    Luo, SL; Fu, SS
  • Analytic expressions of discord and geometric discord in Werner derivatives
    Tang, HJ; Liu, YM; Chen, JL; Ye, BL; Zhang, ZJ
  • Photonic simulation of system–environment interaction: non-Markovian processes and dynamical decoupling
    Zou, C; Chen, X
  • Swapping of correlations via teleportation with decoherence
    Dajka, J
  • Experimental generation of quantum discord via noisy processes
    Lanyon, BP; Jurcevic, P; Hempel, C
  • Experimental characterization of Gaussian quantum discord generated by four-wave mixing
    Vogl, U; Glasser, RT; Glorieux, Q
  • Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations
    Benedetti, C; Shurupov, AP; Paris, MGA

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off