Quantum correlation evolution of GHZ and $$W$$ W states under noisy channels using ameliorated measurement-induced disturbance

Quantum correlation evolution of GHZ and $$W$$ W states under noisy channels using... We study quantum correlation of Greenberger–Horne–Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the same quantum correlation in the absence of noise, it is shown that the W state is more robust than the GHZ state through most noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical relations for the time evolution of quantum correlations in terms of the noisy parameter $$\kappa $$ κ and remove its overestimating quantum correlations upon implementing the ameliorated measurement-induced disturbance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum correlation evolution of GHZ and $$W$$ W states under noisy channels using ameliorated measurement-induced disturbance

Loading next page...
 
/lp/springer_journal/quantum-correlation-evolution-of-ghz-and-w-w-states-under-noisy-eItDzyukA0
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0846-3
Publisher site
See Article on Publisher Site

Abstract

We study quantum correlation of Greenberger–Horne–Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the same quantum correlation in the absence of noise, it is shown that the W state is more robust than the GHZ state through most noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical relations for the time evolution of quantum correlations in terms of the noisy parameter $$\kappa $$ κ and remove its overestimating quantum correlations upon implementing the ameliorated measurement-induced disturbance.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off