Quantum Computing Using Quadrupolar Spins in Solid State NMR

Quantum Computing Using Quadrupolar Spins in Solid State NMR Nuclear magnetic resonance (NMR) is a successful method for experimental implementation of quantum information processing. Most of the successful NMR quantum processors are small molecules in liquid state. In this case each spin half particle represents a qubit. Another approach is the usage of higher spin particles as multi qubit systems. We present the first solid state virtual 2-Qubit system, represented by the spin-3/2 nucleus 23Na in a NaNO3 single crystal. For this system we show how to create the pseudo pure states and we derive a set of propagators and logic gates corresponding to the selective excitation of single quantum transitions. With this set, the preparation of an “entangled” state is experimentally verified by state tomography, adjusted to the spin-3/2 system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum Computing Using Quadrupolar Spins in Solid State NMR

Loading next page...
 
/lp/springer_journal/quantum-computing-using-quadrupolar-spins-in-solid-state-nmr-0XUPnj9z8w
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1023461628937
Publisher site
See Article on Publisher Site

Abstract

Nuclear magnetic resonance (NMR) is a successful method for experimental implementation of quantum information processing. Most of the successful NMR quantum processors are small molecules in liquid state. In this case each spin half particle represents a qubit. Another approach is the usage of higher spin particles as multi qubit systems. We present the first solid state virtual 2-Qubit system, represented by the spin-3/2 nucleus 23Na in a NaNO3 single crystal. For this system we show how to create the pseudo pure states and we derive a set of propagators and logic gates corresponding to the selective excitation of single quantum transitions. With this set, the preparation of an “entangled” state is experimentally verified by state tomography, adjusted to the spin-3/2 system.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off