Quantum computing and quantum simulation with group-II atoms

Quantum computing and quantum simulation with group-II atoms Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1S0 ground state and the long-lived 3P0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum computing and quantum simulation with group-II atoms

Loading next page...
Springer US
Copyright © 2011 by Springer Science+Business Media, LLC
Physics; Quantum Physics; Computer Science, general; Mathematics, general; Theoretical, Mathematical and Computational Physics; Physics, general
Publisher site
See Article on Publisher Site


  • A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
    Bakr, W.S.; Gillen, J.I.; Peng, A.; Flling, S.; Greiner, M.
  • Single-atom-resolved fluorescence imaging of an atomic Mott insulator
    Sherson, J.F.; Weitenberg, C.; Endres, M.; Cheneau, M.; Bloch, I.; Kuhr, S.
  • In situ observation of incompressible Mott-insulating domains in ultracold atomic gases
    Gemelke, N.; Zhang, X.; Hung, C.-L.; Chin, C.
  • Single-spin addressing in an atomic Mott insulator
    Weitenberg, C.; Endres, M.; Sherson, J.F.; Cheneau, M.; Schauß, P.; Fukuhara, T.; Bloch, I.; Kuhr, S.
  • Entangled states of trapped atomic ions
    Blatt, R.; Wineland, D.
  • Exotic many-body physics with large-spin fermi gases
    Wu, C.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial