Quantum Computer Development with Single Ion Implantation

Quantum Computer Development with Single Ion Implantation Spins of single donor atoms are attractive candidates for large scale quantum information processing in silicon. Formation of devices with a few qubits is crucial for validation of basic ideas and development of a scalable architecture. We describe our development of a single ion implantation technique for placement of single atoms into device structures. Collimated highly charged ion beams are aligned with a scanning probe microscope. Enhanced secondary electron emission due tohigh ion charge states (e.g., 31P13+, or 126Te33+)allows efficient detection of single ion impacts. Studies of electrical activation of low dose, low energy implants of 31P in silicon show a drastic effect of dopant segregation to the SiO2/Si interface,while Si3N4/Si retards 31P segregation. We discuss resolution limiting factors in ion placement, and process challenges forintegration of single atom arrays with control gates and single electron transistors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum Computer Development with Single Ion Implantation

Loading next page...
 
/lp/springer_journal/quantum-computer-development-with-single-ion-implantation-AiC0uG68T9
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by Springer Science + Business Media, Inc.
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-004-3879-1
Publisher site
See Article on Publisher Site

Abstract

Spins of single donor atoms are attractive candidates for large scale quantum information processing in silicon. Formation of devices with a few qubits is crucial for validation of basic ideas and development of a scalable architecture. We describe our development of a single ion implantation technique for placement of single atoms into device structures. Collimated highly charged ion beams are aligned with a scanning probe microscope. Enhanced secondary electron emission due tohigh ion charge states (e.g., 31P13+, or 126Te33+)allows efficient detection of single ion impacts. Studies of electrical activation of low dose, low energy implants of 31P in silicon show a drastic effect of dopant segregation to the SiO2/Si interface,while Si3N4/Si retards 31P segregation. We discuss resolution limiting factors in ion placement, and process challenges forintegration of single atom arrays with control gates and single electron transistors.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off