Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits

Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits We introduce simple qubit-encodings and logic gates which eliminate the need for certain difficult single-qubit operations in superconducting phase-qubits, while preserving universality. The simplest encoding uses two physical qubits per logical qubit. Two architectures for its implementation are proposed: one employing N physical qubits out of which N/2 are ancillas fixed in the |1 state, the other employing N/2+1 physical qubits, one of which is a bus qubit connected to all others. Details of a minimal set of universal encoded logic operations are given, together with recoupling schemes, that require nanosecond pulses. A generalization to codes with higher ratio of number of logical qubits per physical qubits is presented. Compatible decoherence and noise suppression strategies are also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits

Loading next page...
 
/lp/springer_journal/quantum-codes-for-simplifying-design-and-suppressing-decoherence-in-KD4TydnrbV
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1019821008131
Publisher site
See Article on Publisher Site

Abstract

We introduce simple qubit-encodings and logic gates which eliminate the need for certain difficult single-qubit operations in superconducting phase-qubits, while preserving universality. The simplest encoding uses two physical qubits per logical qubit. Two architectures for its implementation are proposed: one employing N physical qubits out of which N/2 are ancillas fixed in the |1 state, the other employing N/2+1 physical qubits, one of which is a bus qubit connected to all others. Details of a minimal set of universal encoded logic operations are given, together with recoupling schemes, that require nanosecond pulses. A generalization to codes with higher ratio of number of logical qubits per physical qubits is presented. Compatible decoherence and noise suppression strategies are also discussed.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off