Quantum chemical study of some triazoles as inhibitors of corrosion of copper in acid media

Quantum chemical study of some triazoles as inhibitors of corrosion of copper in acid media The efficiency of 1H-1,2,4-triazol-3-amine (Tz1), 4-amino-3-hydrazino-4H-1,2,4-triazole-3-thiol (Tz2), and 1H-1,2,4-triazole-3,5-diamine (Tz3) as inhibitors of corrosion of copper in nitric acid was investigated by use of density functional theory (DFT). Quantum chemical data, for example energy of the highest occupied molecular orbital (E HOMO), energy of the lowest unoccupied molecular orbital (E LUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), fraction of electrons transferred from the inhibitor molecules to the metallic atom (ΔN), and total energy (TE), were calculated. All calculations were performed by use of DFT with Gaussian 03W software. A good correlation was found between theoretical data and experimental results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Quantum chemical study of some triazoles as inhibitors of corrosion of copper in acid media

Loading next page...
 
/lp/springer_journal/quantum-chemical-study-of-some-triazoles-as-inhibitors-of-corrosion-of-c7aCV6JdDY
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0684-9
Publisher site
See Article on Publisher Site

Abstract

The efficiency of 1H-1,2,4-triazol-3-amine (Tz1), 4-amino-3-hydrazino-4H-1,2,4-triazole-3-thiol (Tz2), and 1H-1,2,4-triazole-3,5-diamine (Tz3) as inhibitors of corrosion of copper in nitric acid was investigated by use of density functional theory (DFT). Quantum chemical data, for example energy of the highest occupied molecular orbital (E HOMO), energy of the lowest unoccupied molecular orbital (E LUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), fraction of electrons transferred from the inhibitor molecules to the metallic atom (ΔN), and total energy (TE), were calculated. All calculations were performed by use of DFT with Gaussian 03W software. A good correlation was found between theoretical data and experimental results.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 26, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off