Quantum chemical study of inhibition of the corrosion of mild steel in 1M hydrochloric acid solution by newly synthesized benzamide derivatives

Quantum chemical study of inhibition of the corrosion of mild steel in 1M hydrochloric acid... The inhibitory effect of some new synthesized benzamide compounds on corrosion of mild steel in 1 M HCl solution has been studied by use of weight loss measurements and the electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibiting action is more pronounced with increasing concentration. Inhibition efficiency is maximum (approximately 99 %) at 10−3 M. Polarization measurements also show that the compounds act as mixed inhibitors. The cathodic curves indicate that reduction of protons at the mild steel surface occurs as a result of a pure activating mechanism. EIS measurements reveal increased transfer resistance with increasing inhibitor concentration. The presence of heteroatoms increases inhibition efficiency without causing a drastic change in adsorption mechanism, which follows the Langmuir isotherm model. Significant correlations were obtained between inhibition efficiency with the chemical indexes calculated, by use of the standard software Gaussian03, on the basis of density functional theory (DFT) at the B3LYP/6-31G** level of theory, indicating that variation of inhibition with inhibitor structure may be explained in terms of electronic properties. The effect of temperature on the corrosion behaviour of steel in 1 M HCl without and with inhibitors at 10−3 M was studied in the temperature range from 308 to 333 K, and the associated activation energy was determined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Quantum chemical study of inhibition of the corrosion of mild steel in 1M hydrochloric acid solution by newly synthesized benzamide derivatives

Loading next page...
 
/lp/springer_journal/quantum-chemical-study-of-inhibition-of-the-corrosion-of-mild-steel-in-Nds1idv5Hi
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1022-6
Publisher site
See Article on Publisher Site

Abstract

The inhibitory effect of some new synthesized benzamide compounds on corrosion of mild steel in 1 M HCl solution has been studied by use of weight loss measurements and the electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibiting action is more pronounced with increasing concentration. Inhibition efficiency is maximum (approximately 99 %) at 10−3 M. Polarization measurements also show that the compounds act as mixed inhibitors. The cathodic curves indicate that reduction of protons at the mild steel surface occurs as a result of a pure activating mechanism. EIS measurements reveal increased transfer resistance with increasing inhibitor concentration. The presence of heteroatoms increases inhibition efficiency without causing a drastic change in adsorption mechanism, which follows the Langmuir isotherm model. Significant correlations were obtained between inhibition efficiency with the chemical indexes calculated, by use of the standard software Gaussian03, on the basis of density functional theory (DFT) at the B3LYP/6-31G** level of theory, indicating that variation of inhibition with inhibitor structure may be explained in terms of electronic properties. The effect of temperature on the corrosion behaviour of steel in 1 M HCl without and with inhibitors at 10−3 M was studied in the temperature range from 308 to 333 K, and the associated activation energy was determined.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 22, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off