Quantum-aperture formation in a quasi-ballistic MESFET by neutron irradiation

Quantum-aperture formation in a quasi-ballistic MESFET by neutron irradiation The effect of neutron irradiation with a fluence reaching 5 × 1015 cm−2 on a quasi-ballistic MESFET is studied theoretically and experimentally. A marked improvement is observed in the device performance; it is attributed to quantum effects. The experimental results are interpreted by the Monte Carlo simulation of defect formation and carrier transport in the channel of irradiated devices. It is shown that the positive effect of irradiation may be linked to the transformation of the channel into a set of quantum-size gaps (short quantum wires) between radiation-defect clusters. The higher degree of control over the drain current should result from the influence of the gate voltage on the gap diameter (and hence on the electron energy levels associated with the gaps). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Quantum-aperture formation in a quasi-ballistic MESFET by neutron irradiation

Loading next page...
 
/lp/springer_journal/quantum-aperture-formation-in-a-quasi-ballistic-mesfet-by-neutron-MwMm2xsWQJ
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1007/s11180-006-0004-4
Publisher site
See Article on Publisher Site

Abstract

The effect of neutron irradiation with a fluence reaching 5 × 1015 cm−2 on a quasi-ballistic MESFET is studied theoretically and experimentally. A marked improvement is observed in the device performance; it is attributed to quantum effects. The experimental results are interpreted by the Monte Carlo simulation of defect formation and carrier transport in the channel of irradiated devices. It is shown that the positive effect of irradiation may be linked to the transformation of the channel into a set of quantum-size gaps (short quantum wires) between radiation-defect clusters. The higher degree of control over the drain current should result from the influence of the gate voltage on the gap diameter (and hence on the electron energy levels associated with the gaps).

Journal

Russian MicroelectronicsSpringer Journals

Published: Nov 21, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off