Quantum algorithm to find invariant linear structure of MD hash functions

Quantum algorithm to find invariant linear structure of MD hash functions In this paper, we consider a special problem. “Given a function $$f$$ f : $$\{0, 1\}^{n}\rightarrow \{0, 1\}^{m}$$ { 0 , 1 } n → { 0 , 1 } m . Suppose there exists a n-bit string $$\alpha \in \{0, 1\}^{n}$$ α ∈ { 0 , 1 } n subject to $$f(x\oplus \alpha )=f(x)$$ f ( x ⊕ α ) = f ( x ) for $$\forall x\in \{0, 1\}^{n}$$ ∀ x ∈ { 0 , 1 } n . We only know the Hamming weight $$W(\alpha )=1$$ W ( α ) = 1 , and find this $$\alpha $$ α .” We present a quantum algorithm with “Oracle” to solve this problem. The successful probability of the quantum algorithm is $$(\frac{2^{l}-1}{2^{l}})^{n-1}$$ ( 2 l - 1 2 l ) n - 1 , and the time complexity of the quantum algorithm is $$O(\log (n-1))$$ O ( log ( n - 1 ) ) for the given Hamming weight $$W(\alpha )=1$$ W ( α ) = 1 . As an application, we present a quantum algorithm to decide whether there exists such an invariant linear structure of the $$MD$$ M D hash function family as a kind of collision. Then, we provide some consumptions of the quantum algorithms using the time–space trade-off. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum algorithm to find invariant linear structure of MD hash functions

Loading next page...
 
/lp/springer_journal/quantum-algorithm-to-find-invariant-linear-structure-of-md-hash-SheSWCHveb
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0909-5
Publisher site
See Article on Publisher Site

Abstract

In this paper, we consider a special problem. “Given a function $$f$$ f : $$\{0, 1\}^{n}\rightarrow \{0, 1\}^{m}$$ { 0 , 1 } n → { 0 , 1 } m . Suppose there exists a n-bit string $$\alpha \in \{0, 1\}^{n}$$ α ∈ { 0 , 1 } n subject to $$f(x\oplus \alpha )=f(x)$$ f ( x ⊕ α ) = f ( x ) for $$\forall x\in \{0, 1\}^{n}$$ ∀ x ∈ { 0 , 1 } n . We only know the Hamming weight $$W(\alpha )=1$$ W ( α ) = 1 , and find this $$\alpha $$ α .” We present a quantum algorithm with “Oracle” to solve this problem. The successful probability of the quantum algorithm is $$(\frac{2^{l}-1}{2^{l}})^{n-1}$$ ( 2 l - 1 2 l ) n - 1 , and the time complexity of the quantum algorithm is $$O(\log (n-1))$$ O ( log ( n - 1 ) ) for the given Hamming weight $$W(\alpha )=1$$ W ( α ) = 1 . As an application, we present a quantum algorithm to decide whether there exists such an invariant linear structure of the $$MD$$ M D hash function family as a kind of collision. Then, we provide some consumptions of the quantum algorithms using the time–space trade-off.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 7, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off