Quantity discrimination in angelfish (Pterophyllum scalare) is maintained after a 30-s retention interval in the large but not in the small number range

Quantity discrimination in angelfish (Pterophyllum scalare) is maintained after a 30-s retention... The ability to discriminate between sets that differ in the number of elements can be useful in different contexts and may have survival and fitness consequences. As such, numerical/quantity discrimination has been demonstrated in a diversity of animal species. In the laboratory, this ability has been analyzed, for example, using binary choice tests. Furthermore, when the different number of items first presented to the subjects are subsequently obscured, i.e., are not visible at the moment of making a choice, the task requires memory for the size of the sets. In previous work, angelfish (Pterophyllum scalare) have been found to be able to discriminate shoals differing in the number of shoal members both in the small (less than 4) and the large (4 or more) number range, and they were able to perform well even when a short memory retention interval (2–15 s) was imposed. In the current study, we increased the retention interval to 30 s during which the shoals to choose between were obscured, and investigated whether angelfish could show preference for the larger shoal they saw before this interval. Subjects were faced with a discrimination between numerically small shoals (≤4 fish) and also between numerically large (≥4 fish) shoals of conspecifics. We found angelfish not to be able to remember the location of larger versus smaller shoals in the small number range, but to exhibit significant memory for the larger shoal in the large number range as long as the ratio between these shoals was at least 2:1. These results, together with prior findings, suggest the existence of two separate quantity estimation systems, the object file system for small number of items that does not work with the longer retention interval and the analogue magnitude system for larger number of items that does. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Animal Cognition Springer Journals

Quantity discrimination in angelfish (Pterophyllum scalare) is maintained after a 30-s retention interval in the large but not in the small number range

Loading next page...
 
/lp/springer_journal/quantity-discrimination-in-angelfish-pterophyllum-scalare-is-oPcHlbd8n8
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Behavioral Sciences; Zoology; Psychology Research
ISSN
1435-9448
eISSN
1435-9456
D.O.I.
10.1007/s10071-017-1104-8
Publisher site
See Article on Publisher Site

Abstract

The ability to discriminate between sets that differ in the number of elements can be useful in different contexts and may have survival and fitness consequences. As such, numerical/quantity discrimination has been demonstrated in a diversity of animal species. In the laboratory, this ability has been analyzed, for example, using binary choice tests. Furthermore, when the different number of items first presented to the subjects are subsequently obscured, i.e., are not visible at the moment of making a choice, the task requires memory for the size of the sets. In previous work, angelfish (Pterophyllum scalare) have been found to be able to discriminate shoals differing in the number of shoal members both in the small (less than 4) and the large (4 or more) number range, and they were able to perform well even when a short memory retention interval (2–15 s) was imposed. In the current study, we increased the retention interval to 30 s during which the shoals to choose between were obscured, and investigated whether angelfish could show preference for the larger shoal they saw before this interval. Subjects were faced with a discrimination between numerically small shoals (≤4 fish) and also between numerically large (≥4 fish) shoals of conspecifics. We found angelfish not to be able to remember the location of larger versus smaller shoals in the small number range, but to exhibit significant memory for the larger shoal in the large number range as long as the ratio between these shoals was at least 2:1. These results, together with prior findings, suggest the existence of two separate quantity estimation systems, the object file system for small number of items that does not work with the longer retention interval and the analogue magnitude system for larger number of items that does.

Journal

Animal CognitionSpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off