Quantitative velocity measurement in thin-gap Poiseuille flows

Quantitative velocity measurement in thin-gap Poiseuille flows Quantitative in-plane velocity measurement by means of particle image velocimetry (PIV) within thin-gap devices subject to a large depth of focus and Poiseuille flow conditions across the gap is investigated. The primary obstacles to a reliable quantitative measurement are due to the effects of the inherent wall-normal velocity gradient and the inertial migration of particles in the wall-normal direction. Specifically, in the simplest case of no particle migration, the PIV correlation peak is broadened due to velocity variations within the interrogation region, and the result is expected to predict the maximum centerline velocity. The current work demonstrates, however, that there is an inevitable underestimation of the peak velocity due to the convolution of the fluid displacement probability distribution function (PDF) by the particle image size that introduces a biased error typically up to 33 % of the centerline velocity for all but the smallest particle images and largest displacements. Due to the low signal-to-noise ratio caused by the velocity gradient, the probability of a valid estimate is significantly impaired, demanding an unrealistically high concentration of tracer particles. In addition, inertial particle migration within the channel introduces a selective sampling of the velocity PDF, causing a second correlation peak to emerge as the particles rapidly move away from the wall, making a reliable measurement troublesome. In later times, the particles reach their equilibrium position and hence sample only a single velocity value, presenting conditions similar to traditional PIV interrogations, with the correlation function reduced to a single symmetric peak. A practical procedure is proposed to make PIV quantitative by manipulating the particles to their equilibrium position prior to performing measurements. A demonstration of a reliable PIV measurement under appropriate working conditions is discussed for diffusive Rayleigh–Bénard convection in a Hele-Shaw cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantitative velocity measurement in thin-gap Poiseuille flows

Loading next page...
 
/lp/springer_journal/quantitative-velocity-measurement-in-thin-gap-poiseuille-flows-x65jcD9AZ0
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1706-8
Publisher site
See Article on Publisher Site

Abstract

Quantitative in-plane velocity measurement by means of particle image velocimetry (PIV) within thin-gap devices subject to a large depth of focus and Poiseuille flow conditions across the gap is investigated. The primary obstacles to a reliable quantitative measurement are due to the effects of the inherent wall-normal velocity gradient and the inertial migration of particles in the wall-normal direction. Specifically, in the simplest case of no particle migration, the PIV correlation peak is broadened due to velocity variations within the interrogation region, and the result is expected to predict the maximum centerline velocity. The current work demonstrates, however, that there is an inevitable underestimation of the peak velocity due to the convolution of the fluid displacement probability distribution function (PDF) by the particle image size that introduces a biased error typically up to 33 % of the centerline velocity for all but the smallest particle images and largest displacements. Due to the low signal-to-noise ratio caused by the velocity gradient, the probability of a valid estimate is significantly impaired, demanding an unrealistically high concentration of tracer particles. In addition, inertial particle migration within the channel introduces a selective sampling of the velocity PDF, causing a second correlation peak to emerge as the particles rapidly move away from the wall, making a reliable measurement troublesome. In later times, the particles reach their equilibrium position and hence sample only a single velocity value, presenting conditions similar to traditional PIV interrogations, with the correlation function reduced to a single symmetric peak. A practical procedure is proposed to make PIV quantitative by manipulating the particles to their equilibrium position prior to performing measurements. A demonstration of a reliable PIV measurement under appropriate working conditions is discussed for diffusive Rayleigh–Bénard convection in a Hele-Shaw cell.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off