Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY acrylamide formulations

Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY... The CLARITY technique enables three-dimensional visualization of fluorescent-labeled biomolecules in clarified intact brain samples, affording a unique view of molecular neuroanatomy and neurocircuitry. It is therefore, essential to find the ideal combination for clearing tissue and detecting the fluorescent-labeled signal. This method requires the formation of a formaldehyde–acrylamide fixative-generated hydrogel mesh through which cellular lipid is removed with sodium dodecyl sulfate. Several laboratories have used differential acrylamide and detergent concentrations to achieve better tissue clearing and antibody penetration, but the potential effects upon fluorescent signal retention is largely unknown. In an effort to optimize CLARITY processing procedures we performed quantitative parvalbumin immunofluorescence and lectin-based vasculature staining using either 4 or 8% sodium dodecyl sulfate detergent in combination with different acrylamide formulas in mouse brain slices. Using both confocal and CLARITY-optimized lightsheet microscope-acquired images, we demonstrate that 2% acrylamide monomer combined with 0.0125% bis-acrylamide and cleared with 4% sodium dodecyl sulfate generally provides the most optimal signal visualization amongst various hydrogel monomer concentrations, lipid removal times, and detergent concentrations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY acrylamide formulations

Loading next page...
 
/lp/springer_journal/quantitative-validation-of-immunofluorescence-and-lectin-staining-gK0YYld1XB
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-017-1583-z
Publisher site
See Article on Publisher Site

Abstract

The CLARITY technique enables three-dimensional visualization of fluorescent-labeled biomolecules in clarified intact brain samples, affording a unique view of molecular neuroanatomy and neurocircuitry. It is therefore, essential to find the ideal combination for clearing tissue and detecting the fluorescent-labeled signal. This method requires the formation of a formaldehyde–acrylamide fixative-generated hydrogel mesh through which cellular lipid is removed with sodium dodecyl sulfate. Several laboratories have used differential acrylamide and detergent concentrations to achieve better tissue clearing and antibody penetration, but the potential effects upon fluorescent signal retention is largely unknown. In an effort to optimize CLARITY processing procedures we performed quantitative parvalbumin immunofluorescence and lectin-based vasculature staining using either 4 or 8% sodium dodecyl sulfate detergent in combination with different acrylamide formulas in mouse brain slices. Using both confocal and CLARITY-optimized lightsheet microscope-acquired images, we demonstrate that 2% acrylamide monomer combined with 0.0125% bis-acrylamide and cleared with 4% sodium dodecyl sulfate generally provides the most optimal signal visualization amongst various hydrogel monomer concentrations, lipid removal times, and detergent concentrations.

Journal

Brain Structure and FunctionSpringer Journals

Published: Dec 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off