Quantitative temperature imaging in gas-phase turbulent thermal convection by laser-induced fluorescence of acetone

Quantitative temperature imaging in gas-phase turbulent thermal convection by laser-induced... In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh–Bénard convection at Rayleigh number Ra = 1.3×105. The PLIF technique provides quantitative spatially correlated temperature data without the flow intrusion or time lag associated with physical probes, and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach–Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The "instantaneous" (20-ns integration time) thermal images presented have a spatial resolution of 176×176×500 µm and a single-pulse temperature measurement precision of ± 2.5 K, or 2.5% of the total temperature difference. These images represent a two-dimensional slice through a complex three-dimensional flow, allowing for thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, root-mean square (rms) temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantitative temperature imaging in gas-phase turbulent thermal convection by laser-induced fluorescence of acetone

Loading next page...
Copyright © 2003 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial