Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel

Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel A novel application of DPIV methods is presented for measuring velocity and vorticity distributions in vertical cross sections through the wake of a freely flying bird (thrush nightingale) in a wind tunnel. A dual-camera system is used, and successive cross-correlation operations remove lens/camera distortions, and then the undisturbed background flow, so that the final operation simply examines the disturbance effect of the bird alone. The concentration and tuning of processing methods to the disturbance quantities allows full exploitation of the correlation calculation and estimation algorithms. Since the ultimate objective is to deduce forces and power requirements on the bird itself from the wake structure, the analytical procedure is followed through an example on a fixed airfoil, before sample results from extensive bird flight tests are described. The wake structure of the thrush nightingale in slow (5-m/s) flight is qualitatively quite similar to those previously described in the literature, but certain quantitative details are different in important respects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel

Loading next page...
 
/lp/springer_journal/quantitative-studies-of-the-wakes-of-freely-flying-birds-in-a-low-kM3RHTxYZX
Publisher
Springer Journals
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluids; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0559-8
Publisher site
See Article on Publisher Site

Abstract

A novel application of DPIV methods is presented for measuring velocity and vorticity distributions in vertical cross sections through the wake of a freely flying bird (thrush nightingale) in a wind tunnel. A dual-camera system is used, and successive cross-correlation operations remove lens/camera distortions, and then the undisturbed background flow, so that the final operation simply examines the disturbance effect of the bird alone. The concentration and tuning of processing methods to the disturbance quantities allows full exploitation of the correlation calculation and estimation algorithms. Since the ultimate objective is to deduce forces and power requirements on the bird itself from the wake structure, the analytical procedure is followed through an example on a fixed airfoil, before sample results from extensive bird flight tests are described. The wake structure of the thrush nightingale in slow (5-m/s) flight is qualitatively quite similar to those previously described in the literature, but certain quantitative details are different in important respects.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 19, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off