Quantitative PCR: an alternative approach to detect common copy number alterations in multiple myeloma

Quantitative PCR: an alternative approach to detect common copy number alterations in multiple... Chromosome 1q gains and 13q deletions are common cytogenetic aberrations in multiple myeloma (MM) that confer a poor prognosis. There are several techniques for the targeted study of these alterations, but interphase fluorescence in situ hybridization (FISH) is the current gold standard. The aim of the present study was to validate quantitative PCR (qPCR) as an alternative to FISH studies in CD138+-enriched plasma cells (PCs) from MM patients at diagnosis. We analyzed 1q gains and 13q deletions by qPCR in 57 and 60 MM patients, respectively. qPCR applicability was 84 and 88% for 1q and 13q, respectively. The qPCR and FISH methods had a sensitivity and specificity of 88 and 71% for 1q gains, and 79 and 100% for 13q deletions. A second qPCR assay for each region was carried out to confirm the previous results. Paired qPCR (two assays) and FISH results were available from 53 MM patients: 26 for 1q amplification and 27 for 13q deletion. qPCR assays gave concordant results (qPCR-consistent) in 20 of the 26 (77%) 1q gains and 25 of the 27 (93%) 13q deletions. Considering only the consistent data, the overall concordance among qPCR and FISH was 85 and 100% for 1q gains and 13q deletions, respectively. Our results show a substantial agreement between qPCR and the gold standard FISH technique, indicating the potential of qPCR as an alternative approach, particularly when the starting material is too scarce or cells are too damaged to obtain accurate results from FISH studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Hematology Springer Journals

Quantitative PCR: an alternative approach to detect common copy number alterations in multiple myeloma

Loading next page...
 
/lp/springer_journal/quantitative-pcr-an-alternative-approach-to-detect-common-copy-number-5R4PTGgCzR
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Medicine & Public Health; Hematology; Oncology
ISSN
0939-5555
eISSN
1432-0584
D.O.I.
10.1007/s00277-017-3083-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial