Quantitative evaluation of PIV peak locking through a multiple Δt strategy: relevance of the rms component

Quantitative evaluation of PIV peak locking through a multiple Δt strategy: relevance of the rms... The possibility of using different times between laser pulses (Δt) in a PIV (Particle Image Velocimetry) measurement of the same real flow field for error assessment has already been proposed by the authors in a recent paper Nogueira et al. (Meas Sci Technol 20, 2009). It is a simple procedure that is available with the usual PIV setup. In that work, peak locking was considered basically as a bias error. Later measurements indicated that, using appropriate processing algorithms, this error is not the main peak-locking effect. Scenarios with the rms (root mean square) error due to peak locking as the most relevant contribution are more common than initially expected and require a differentiated approach. This issue is relevant due to the impact of the rms error in the evaluation of flow quantities like turbulent kinetic energy. The first part of this work is centred on showing that peak-locking error in PIV is not always a measurement bias towards the closest pixel integer displacement. Insight in the subject indicates that this is the case only for algorithm-induced peak locking. The peak locking coming out of image acquisition limitations (i.e. resolution) is not ‘a priory’ biased. It is a random error with a peculiar probability density function. Discussion on the subject is offered, and a particular approach to use a simple multiple Δt strategy to asses this error is proposed. The results reveal that in real images where amplitude of the peak-locking bias error is assessed to be as small as 0.02 pixels, rms errors can be in the order of 0.1 pixels. As PIV approaches maturity, providing a quantitative confidence interval by estimating measurement error seems essential. The method developed is robust enough to quantify these values in the presence of turbulence with rms up to ~0.6 pixels. This proposal constitutes a relevant step forward from the traditional histogram-based considerations that only reveal whether strong peak-locking error is present or not, without any information on its magnitude or whether its origin is bias or rms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantitative evaluation of PIV peak locking through a multiple Δt strategy: relevance of the rms component

Loading next page...
 
/lp/springer_journal/quantitative-evaluation-of-piv-peak-locking-through-a-multiple-t-2U66u4mnO1
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1094-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial