Quantitative analysis of 3D hydrodynamic focusing of microparticles by digital holographic microscopy

Quantitative analysis of 3D hydrodynamic focusing of microparticles by digital holographic... In the field of life sciences, the monitoring of biological samples has become a great concern to control the ecosystem evolution. However, their characterization is often time-consuming because the typical size of the organisms/particles of interest is several orders of magnitude smaller than the size of the sample under observation. Optical visualization systems require, then, high magnifications that severely limit the depth of focus and consequently decrease the sampling rate. To tackle this issue, the most straightforward technique consists in focusing the samples to fit the observation field of view by means of so-called "sheath flows". This expedient allows for increasing the overall flow rate, inversely related to the sampling time. In this article, a cost-effective 3D hydro-focusing device is presented. Several flow rates have been tested for both sample and sheath flows, and a thorough investigation of the shape of the focused streamlines conducted in order to validate the prototype design. The 3D position of the sampled micro-objects has been located by digital holographic microscopy and their distribution in cross-sections downstream the injection nozzle compared to numerical simulations. A maximum constriction—ratio between the part of the cross-sections where particles are present with and without focusing sheath flow—of 4.4 % has been observed confirming the potentiality of the technique. Also, a successful match between experiment and numerical simulation has been noted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantitative analysis of 3D hydrodynamic focusing of microparticles by digital holographic microscopy

Loading next page...
 
/lp/springer_journal/quantitative-analysis-of-3d-hydrodynamic-focusing-of-microparticles-by-fe4QuJhK04
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1667-y
Publisher site
See Article on Publisher Site

Abstract

In the field of life sciences, the monitoring of biological samples has become a great concern to control the ecosystem evolution. However, their characterization is often time-consuming because the typical size of the organisms/particles of interest is several orders of magnitude smaller than the size of the sample under observation. Optical visualization systems require, then, high magnifications that severely limit the depth of focus and consequently decrease the sampling rate. To tackle this issue, the most straightforward technique consists in focusing the samples to fit the observation field of view by means of so-called "sheath flows". This expedient allows for increasing the overall flow rate, inversely related to the sampling time. In this article, a cost-effective 3D hydro-focusing device is presented. Several flow rates have been tested for both sample and sheath flows, and a thorough investigation of the shape of the focused streamlines conducted in order to validate the prototype design. The 3D position of the sampled micro-objects has been located by digital holographic microscopy and their distribution in cross-sections downstream the injection nozzle compared to numerical simulations. A maximum constriction—ratio between the part of the cross-sections where particles are present with and without focusing sheath flow—of 4.4 % has been observed confirming the potentiality of the technique. Also, a successful match between experiment and numerical simulation has been noted.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 22, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off