Quantiles over data streams: experimental comparisons, new analyses, and further improvements

Quantiles over data streams: experimental comparisons, new analyses, and further improvements A fundamental problem in data management and analysis is to generate descriptions of the distribution of data. It is most common to give such descriptions in terms of the cumulative distribution, which is characterized by the quantiles of the data. The design and engineering of efficient methods to find these quantiles has attracted much study, especially in the case where the data are given incrementally, and we must compute the quantiles in an online, streaming fashion. While such algorithms have proved to be extremely useful in practice, there has been limited formal comparison of the competing methods, and no comprehensive study of their performance. In this paper, we remedy this deficit by providing a taxonomy of different methods and describe efficient implementations. In doing so, we propose new variants that have not been studied before, yet which outperform existing methods. To illustrate this, we provide detailed experimental comparisons demonstrating the trade-offs between space, time, and accuracy for quantile computation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Quantiles over data streams: experimental comparisons, new analyses, and further improvements

Loading next page...
 
/lp/springer_journal/quantiles-over-data-streams-experimental-comparisons-new-analyses-and-OJQ2LZB6Wl
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0424-7
Publisher site
See Article on Publisher Site

Abstract

A fundamental problem in data management and analysis is to generate descriptions of the distribution of data. It is most common to give such descriptions in terms of the cumulative distribution, which is characterized by the quantiles of the data. The design and engineering of efficient methods to find these quantiles has attracted much study, especially in the case where the data are given incrementally, and we must compute the quantiles in an online, streaming fashion. While such algorithms have proved to be extremely useful in practice, there has been limited formal comparison of the competing methods, and no comprehensive study of their performance. In this paper, we remedy this deficit by providing a taxonomy of different methods and describe efficient implementations. In doing so, we propose new variants that have not been studied before, yet which outperform existing methods. To illustrate this, we provide detailed experimental comparisons demonstrating the trade-offs between space, time, and accuracy for quantile computation.

Journal

The VLDB JournalSpringer Journals

Published: Feb 8, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off