Quantifying quantum correlations in fermionic systems using witness operators

Quantifying quantum correlations in fermionic systems using witness operators We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entanglement witness of a state with a class of problems known as semidefinite programs, which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robustness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann concurrence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantifying quantum correlations in fermionic systems using witness operators

Loading next page...
 
/lp/springer_journal/quantifying-quantum-correlations-in-fermionic-systems-using-witness-mMGtI6JKMq
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0415-6
Publisher site
See Article on Publisher Site

Abstract

We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entanglement witness of a state with a class of problems known as semidefinite programs, which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robustness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann concurrence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 11, 2012

References

  • Can quantum mechanical description of physical reality be considered complete
    Einstein, A.; Podolsky, B.; Rosen, N.
  • Quantum entanglement
    Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off