Quantifying Cartilage Biomechanical Properties Using a Linearized Frequency-Domain Method

Quantifying Cartilage Biomechanical Properties Using a Linearized Frequency-Domain Method Articular cartilage function relies on its unique mechanical behavior. Cartilage mechanics have been described by several analytic models, whose parameters are usually estimated by fitting their constitutive equations to stress-relaxation data. This procedure can be long and is prone to experimental and fitting errors. Τhis study describes a novel methodology for estimating the biomechanical properties of cartilage samples based on their linearized frequency response, derived by applying a series of small-amplitude harmonic displacements superimposed to a bias strain. The proposed methodology, denoted as linearized frequency-domain method (LFM), was demonstrated by quantifying the effects of collagenase and hyaluronidase on cartilage, where it provided robust cartilage parameter estimates that overall agreed well with estimates obtained by stress-relaxation analysis. LFM was also applied to unveil the strain-dependent nature of porcine cartilage biomechanical parameters. Results showed that increasing the bias strain from 5% to 15% caused a significant decrease in cartilage permeability but did not have significant effect on the compression modulus and the Poisson’s ratio. Apart from cartilage, LFM can potentially quantify the strain-dependent nature of tissues and biomaterials, thereby enhance tissue-level understanding on organ physiology and pathology, lead to better computational tissue models, and guide tissue engineering research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Biomedical Engineering Springer Journals

Quantifying Cartilage Biomechanical Properties Using a Linearized Frequency-Domain Method

Loading next page...
Springer US
Copyright © 2017 by Biomedical Engineering Society
Biomedicine; Biomedicine, general; Biomedical Engineering; Biological and Medical Physics, Biophysics; Classical Mechanics; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial