Quantifying Cartilage Biomechanical Properties Using a Linearized Frequency-Domain Method

Quantifying Cartilage Biomechanical Properties Using a Linearized Frequency-Domain Method Articular cartilage function relies on its unique mechanical behavior. Cartilage mechanics have been described by several analytic models, whose parameters are usually estimated by fitting their constitutive equations to stress-relaxation data. This procedure can be long and is prone to experimental and fitting errors. Τhis study describes a novel methodology for estimating the biomechanical properties of cartilage samples based on their linearized frequency response, derived by applying a series of small-amplitude harmonic displacements superimposed to a bias strain. The proposed methodology, denoted as linearized frequency-domain method (LFM), was demonstrated by quantifying the effects of collagenase and hyaluronidase on cartilage, where it provided robust cartilage parameter estimates that overall agreed well with estimates obtained by stress-relaxation analysis. LFM was also applied to unveil the strain-dependent nature of porcine cartilage biomechanical parameters. Results showed that increasing the bias strain from 5% to 15% caused a significant decrease in cartilage permeability but did not have significant effect on the compression modulus and the Poisson’s ratio. Apart from cartilage, LFM can potentially quantify the strain-dependent nature of tissues and biomaterials, thereby enhance tissue-level understanding on organ physiology and pathology, lead to better computational tissue models, and guide tissue engineering research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Biomedical Engineering Springer Journals

Quantifying Cartilage Biomechanical Properties Using a Linearized Frequency-Domain Method

Loading next page...
 
/lp/springer_journal/quantifying-cartilage-biomechanical-properties-using-a-linearized-plat6I0VN0
Publisher
Springer US
Copyright
Copyright © 2017 by Biomedical Engineering Society
Subject
Biomedicine; Biomedicine, general; Biomedical Engineering; Biological and Medical Physics, Biophysics; Classical Mechanics; Biochemistry, general
ISSN
0090-6964
eISSN
1573-9686
D.O.I.
10.1007/s10439-017-1861-1
Publisher site
See Article on Publisher Site

Abstract

Articular cartilage function relies on its unique mechanical behavior. Cartilage mechanics have been described by several analytic models, whose parameters are usually estimated by fitting their constitutive equations to stress-relaxation data. This procedure can be long and is prone to experimental and fitting errors. Τhis study describes a novel methodology for estimating the biomechanical properties of cartilage samples based on their linearized frequency response, derived by applying a series of small-amplitude harmonic displacements superimposed to a bias strain. The proposed methodology, denoted as linearized frequency-domain method (LFM), was demonstrated by quantifying the effects of collagenase and hyaluronidase on cartilage, where it provided robust cartilage parameter estimates that overall agreed well with estimates obtained by stress-relaxation analysis. LFM was also applied to unveil the strain-dependent nature of porcine cartilage biomechanical parameters. Results showed that increasing the bias strain from 5% to 15% caused a significant decrease in cartilage permeability but did not have significant effect on the compression modulus and the Poisson’s ratio. Apart from cartilage, LFM can potentially quantify the strain-dependent nature of tissues and biomaterials, thereby enhance tissue-level understanding on organ physiology and pathology, lead to better computational tissue models, and guide tissue engineering research.

Journal

Annals of Biomedical EngineeringSpringer Journals

Published: Jun 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off