Quantified infrared imaging of ignition and combustion in a supersonic flow

Quantified infrared imaging of ignition and combustion in a supersonic flow The utility of quantified infrared radiation imaging was evaluated through interrogating ignition and burning processes within a cavity-based flameholder in supersonic flows. Two ignition techniques, spark discharge and pulse detonation, along with quasi-steady cavity burning were used to assess the sensitivities of measurements of radiation intensities in the infrared. The shedding of ignition kernels from the spark discharge was imaged, showing that sufficient signal-to-noise ratios can be achieved even with weak radiation emission levels. The ignition events using a pulse detonator were captured with time-resolved measurements of the plume evolution, including the barrel shock, Mach disk, and shock diamonds. Radiation emissions from subsequent firings of the pulse detonator increased, indicating that heat loss to the tube walls occurred in the early pulses. Imaging of the quasi-steady burning within the cavity demonstrated that the highest burning flux (visible broadband chemiluminescence) and radiation from hydrocarbons (3.4 µm) do not coincide with each other for the fueling strategy used. Numerical simulations provided insight into the species distributions that caused the infrared emissions. Overall, infrared radiation measurements have been shown to be feasible through combustor windows in the harsh combustion environments that were interrogated, and offer a new avenue for rapid and quantitative measurements of reactive flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantified infrared imaging of ignition and combustion in a supersonic flow

Loading next page...
 
/lp/springer_journal/quantified-infrared-imaging-of-ignition-and-combustion-in-a-supersonic-sLxxBVHKv0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg (outside the USA)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2210-0
Publisher site
See Article on Publisher Site

Abstract

The utility of quantified infrared radiation imaging was evaluated through interrogating ignition and burning processes within a cavity-based flameholder in supersonic flows. Two ignition techniques, spark discharge and pulse detonation, along with quasi-steady cavity burning were used to assess the sensitivities of measurements of radiation intensities in the infrared. The shedding of ignition kernels from the spark discharge was imaged, showing that sufficient signal-to-noise ratios can be achieved even with weak radiation emission levels. The ignition events using a pulse detonator were captured with time-resolved measurements of the plume evolution, including the barrel shock, Mach disk, and shock diamonds. Radiation emissions from subsequent firings of the pulse detonator increased, indicating that heat loss to the tube walls occurred in the early pulses. Imaging of the quasi-steady burning within the cavity demonstrated that the highest burning flux (visible broadband chemiluminescence) and radiation from hydrocarbons (3.4 µm) do not coincide with each other for the fueling strategy used. Numerical simulations provided insight into the species distributions that caused the infrared emissions. Overall, infrared radiation measurements have been shown to be feasible through combustor windows in the harsh combustion environments that were interrogated, and offer a new avenue for rapid and quantitative measurements of reactive flow.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off