Quantification of dispersed phase concentration using light sheet imaging methods

Quantification of dispersed phase concentration using light sheet imaging methods With the prevalence of particle image velocimetry (PIV) as a quantitative tool for fluid mechanics diagnostics, its application for analyzing complicated multiphase flows has been steadily increasing over the last several decades. While the primary issue in using PIV for multiphase flows is in separating the information of the phases for independent analysis with a minimum of spurious “cross-talk,” an equally crucial but often overlooked point is in the accurate quantitative measurement of the dispersed phase concentration. Accurate concentration measurement is important due to the fact that the dispersed phase is often heterogeneously distributed in both space and time, either due to a non-uniformity of the source of particulates (such as a spray nozzle or sediment boundary) or due to inertial migration of the particles even from originally homogeneous spatial distributions. In the current work, we examine the effects of light sheet profile distortion and attenuation by tracer seeding particles, as well as reflected light from local wall boundaries on the effective light sheet thickness. The effective thickness is critical for concentration measurements, as it dictates the dispersed phase detection volume. A direct calibration method is demonstrated to measure the effective light sheet thickness in a water/glass bead system, which shows that systematic bias errors on the order of 30% can result if the reflective bed condition is not accounted for, and the errors can be as high as 50% or more if a single-point measure of the sheet width is used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quantification of dispersed phase concentration using light sheet imaging methods

Loading next page...
Copyright © 2011 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial