Quantification of a tightly adsorbed monolayer of xylan on cellulose surface

Quantification of a tightly adsorbed monolayer of xylan on cellulose surface The successive extraction and re-adsorption of a linear β-(1 → 4) xylan extracted from microfibrillated birch pulp was investigated using solid-state CP/MAS 13C NMR spectroscopy, specific surface area measurements, and atomistic molecular dynamics (MD) simulations. The NMR spectra confirmed that when in contact with cellulose after re-adsorption, the xylan molecules altered their conformation from the classical left-handed threefold structure found in the bulk to a different one, presumably a cellulose-like twofold system for quantities up to the equivalent amount of extracted xylan. Combining these observations with specific surface area measurements and the surface occupied by a xylosyl residue, it was possible to show that the re-adsorbed xylan in the modified conformation occurred only within the first adsorbed layer in direct interaction with the cellulose surface. It is only when an excess xylan was added and after full cellulose surface coverage, that the subsequent deposited layers took the classical threefold organization. Following the variation of xylan conformation in terms of sequential xylan addition allowed quantifying the surface of cellulose accessible for a tight adsorption of xylan, not only for microfibrillated birch cellulose, but for other samples as well. The MD simulations confirmed that xylan in threefold conformation had a weaker affinity for the cellulose surface than its twofold counterpart, thus supporting the hypothesis of the twofold conformation for xylan at the cellulose surface. The MD simulations also showed that in contact with cellulose, the adsorbed xylan was mainly organized as an extended molecular chain aligned parallel to the cellulose chain direction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellulose Springer Journals

Quantification of a tightly adsorbed monolayer of xylan on cellulose surface

Loading next page...
 
/lp/springer_journal/quantification-of-a-tightly-adsorbed-monolayer-of-xylan-on-cellulose-I5Z0MJWL4R
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
ISSN
0969-0239
eISSN
1572-882X
D.O.I.
10.1007/s10570-017-1401-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial