Quantifiable data mining using ratio rules

Quantifiable data mining using ratio rules Association Rule Mining algorithms operate on a data matrix (e.g., customers $\times$ products) to derive association rules [AIS93b, SA96]. We propose a new paradigm, namely, Ratio Rules, which are quantifiable in that we can measure the “goodness” of a set of discovered rules. We also propose the “guessing error” as a measure of the “goodness”, that is, the root-mean-square error of the reconstructed values of the cells of the given matrix, when we pretend that they are unknown. Another contribution is a novel method to guess missing/hidden values from the Ratio Rules that our method derives. For example, if somebody bought $10 of milk and $3 of bread, our rules can “guess” the amount spent on butter. Thus, unlike association rules, Ratio Rules can perform a variety of important tasks such as forecasting, answering “what-if” scenarios, detecting outliers, and visualizing the data. Moreover, we show that we can compute Ratio Rules in a single pass over the data set with small memory requirements (a few small matrices), in contrast to association rule mining methods which require multiple passes and/or large memory. Experiments on several real data sets (e.g., basketball and baseball statistics, biological data) demonstrate that the proposed method: (a) leads to rules that make sense; (b) can find large itemsets in binary matrices, even in the presence of noise; and (c) consistently achieves a “guessing error” of up to 5 times less than using straightforward column averages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Quantifiable data mining using ratio rules

Loading next page...
 
/lp/springer_journal/quantifiable-data-mining-using-ratio-rules-ftaAurfwvg
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050007
Publisher site
See Article on Publisher Site

Abstract

Association Rule Mining algorithms operate on a data matrix (e.g., customers $\times$ products) to derive association rules [AIS93b, SA96]. We propose a new paradigm, namely, Ratio Rules, which are quantifiable in that we can measure the “goodness” of a set of discovered rules. We also propose the “guessing error” as a measure of the “goodness”, that is, the root-mean-square error of the reconstructed values of the cells of the given matrix, when we pretend that they are unknown. Another contribution is a novel method to guess missing/hidden values from the Ratio Rules that our method derives. For example, if somebody bought $10 of milk and $3 of bread, our rules can “guess” the amount spent on butter. Thus, unlike association rules, Ratio Rules can perform a variety of important tasks such as forecasting, answering “what-if” scenarios, detecting outliers, and visualizing the data. Moreover, we show that we can compute Ratio Rules in a single pass over the data set with small memory requirements (a few small matrices), in contrast to association rule mining methods which require multiple passes and/or large memory. Experiments on several real data sets (e.g., basketball and baseball statistics, biological data) demonstrate that the proposed method: (a) leads to rules that make sense; (b) can find large itemsets in binary matrices, even in the presence of noise; and (c) consistently achieves a “guessing error” of up to 5 times less than using straightforward column averages.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off