Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence

Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence The fine-scale structure in turbulence is investigated by quad-plane stereoscopic particle image velocimetry (QPSPIV). The quad-plane consists of two each of different polarizations and wavelengths, and it provides three velocity components at four independent parallel planes. Measurements have been undertaken in the developed region of a turbulent round jet with a spatial resolution sufficient to capture the small-scale structures. The advantage of the QPSPIV is presented in terms of the spectral response in the evaluation of the out-of-plane velocity gradient. The full velocity gradient tensor is computed with a fourth-order finite difference scheme in the out-of-plane direction as well as the in-plane directions. The turbulence quantities, such as the vorticity components, the energy dissipation rate and the second and third invariants of the velocity gradient tensor, are computed according to their faithful definitions. The coherent fine-scale eddies are extracted from the present QPSPIV data. The probability density functions of the diameter and the maximum azimuthal velocity of the extracted eddies exhibit their peak at approximately $$8\eta $$ 8 η and $$1.5u_k$$ 1.5 u k , respectively, where $$\eta $$ η and $$u_k$$ u k are the Kolmogorov length and velocity. These values agree well with the data in the literature. The phase-averaged distributions of turbulence quantities around the coherent fine-scale eddy indicate an apparent elliptic feature around the axis. Furthermore, the state of the strain rate exerting the eddy is quantified from the phase-averaged distributions of eigenvalues of the strain rate tensor and the alignment of the corresponding eigenvectors against the axis. The present study gives a solid experimental support of the coherent fine-scale structures in turbulence, and the technique can be applied to various flow fields and to the higher Reynolds number condition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence

Loading next page...
 
/lp/springer_journal/quad-plane-stereoscopic-piv-for-fine-scale-structure-measurements-in-ZFc0u5k9zS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2146-4
Publisher site
See Article on Publisher Site

Abstract

The fine-scale structure in turbulence is investigated by quad-plane stereoscopic particle image velocimetry (QPSPIV). The quad-plane consists of two each of different polarizations and wavelengths, and it provides three velocity components at four independent parallel planes. Measurements have been undertaken in the developed region of a turbulent round jet with a spatial resolution sufficient to capture the small-scale structures. The advantage of the QPSPIV is presented in terms of the spectral response in the evaluation of the out-of-plane velocity gradient. The full velocity gradient tensor is computed with a fourth-order finite difference scheme in the out-of-plane direction as well as the in-plane directions. The turbulence quantities, such as the vorticity components, the energy dissipation rate and the second and third invariants of the velocity gradient tensor, are computed according to their faithful definitions. The coherent fine-scale eddies are extracted from the present QPSPIV data. The probability density functions of the diameter and the maximum azimuthal velocity of the extracted eddies exhibit their peak at approximately $$8\eta $$ 8 η and $$1.5u_k$$ 1.5 u k , respectively, where $$\eta $$ η and $$u_k$$ u k are the Kolmogorov length and velocity. These values agree well with the data in the literature. The phase-averaged distributions of turbulence quantities around the coherent fine-scale eddy indicate an apparent elliptic feature around the axis. Furthermore, the state of the strain rate exerting the eddy is quantified from the phase-averaged distributions of eigenvalues of the strain rate tensor and the alignment of the corresponding eigenvectors against the axis. The present study gives a solid experimental support of the coherent fine-scale structures in turbulence, and the technique can be applied to various flow fields and to the higher Reynolds number condition.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off