QTL mapping of bread wheat (Triticum aestivum L.) grown under controlled conditions of an agroecobiological testing ground

QTL mapping of bread wheat (Triticum aestivum L.) grown under controlled conditions of an... To determine the effects of physiological and genetic interaction between the genotype and environment, QTL (quantitative trait loci) mapping of valuable traits of bread wheat (Triticum aestivum L.) manifesting under controlled conditions of an agroecobiological testing ground has been first carried out. In the course of two experiments, differing from each other only by temperature and illumination regimes and providing the strict control and invariability of other growing parameters, 99 QTLs determining 30 different agronomically important traits have been identified. According to the results of the QTL mapping and a single-factor ANOVA, changes in the temperature and illumination regimes did not influence 21 of 30 studied traits, which remained stable in their manifestation; only nine traits varied under these conditions, which indicates that their manifestation is dependent on changes in these environmental factors. Both statistical approaches used in this study demonstrated complementary results; for each of them, the maximum likelihood criterion was used, statistical significance was determined, and significance of results was evaluated. The significance of a correlation between the identified QTLs and the polymorphism of individual traits studied was assessed using the threshold value of LOD (logarithm of odds) score. In addition, QTL analysis allowed a block structure of the T. aestivum genome to be revealed, the percentage of a phenotypic variability determined by each of the identified QTLs to be calculated, and the determination of which of the parents donated individual QTL alleles. The obtained results can be used for the further study of the physiological and genetic mechanisms of realization of traits evaluated within the framework of the “genotype–environment” interaction and also for the marker-assisted breeding of wheat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

QTL mapping of bread wheat (Triticum aestivum L.) grown under controlled conditions of an agroecobiological testing ground

Loading next page...
 
/lp/springer_journal/qtl-mapping-of-bread-wheat-triticum-aestivum-l-grown-under-controlled-oHjqtIald1
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716060029
Publisher site
See Article on Publisher Site

Abstract

To determine the effects of physiological and genetic interaction between the genotype and environment, QTL (quantitative trait loci) mapping of valuable traits of bread wheat (Triticum aestivum L.) manifesting under controlled conditions of an agroecobiological testing ground has been first carried out. In the course of two experiments, differing from each other only by temperature and illumination regimes and providing the strict control and invariability of other growing parameters, 99 QTLs determining 30 different agronomically important traits have been identified. According to the results of the QTL mapping and a single-factor ANOVA, changes in the temperature and illumination regimes did not influence 21 of 30 studied traits, which remained stable in their manifestation; only nine traits varied under these conditions, which indicates that their manifestation is dependent on changes in these environmental factors. Both statistical approaches used in this study demonstrated complementary results; for each of them, the maximum likelihood criterion was used, statistical significance was determined, and significance of results was evaluated. The significance of a correlation between the identified QTLs and the polymorphism of individual traits studied was assessed using the threshold value of LOD (logarithm of odds) score. In addition, QTL analysis allowed a block structure of the T. aestivum genome to be revealed, the percentage of a phenotypic variability determined by each of the identified QTLs to be calculated, and the determination of which of the parents donated individual QTL alleles. The obtained results can be used for the further study of the physiological and genetic mechanisms of realization of traits evaluated within the framework of the “genotype–environment” interaction and also for the marker-assisted breeding of wheat.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off