QQL: A DB&IR Query Language

QQL: A DB&IR Query Language Traditional database query languages are based on set theory and crisp first order logic. However, many applications require retrieval-like queries which return result objects associated with a degree of being relevant to the query. Historically, retrieval systems estimate relevance by exploiting hidden object semantics whereas query processing in database systems relies on matching select-conditions with attribute values. Thus, different mechanisms were developed for database and information retrieval systems. In consequence, there is a lack of support for queries involving both retrieval and database search terms. In this work, we introduce the quantum query language (QQL). Its underlying unifying theory is based on the mathematical formalism of quantum mechanics and quantum logic. Van Rijsbergen already discussed the strong relation between the formalism of quantum mechanics and information retrieval. In this work, we interrelate concepts from database query processing to concepts from quantum mechanics and logic. As result, we obtain a common theory which allows us to incorporate seamlessly retrieval search into traditional database query processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

QQL: A DB&IR Query Language

Loading next page...
 
/lp/springer_journal/qql-a-db-ir-query-language-tMIyG82Uv0
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0070-1
Publisher site
See Article on Publisher Site

Abstract

Traditional database query languages are based on set theory and crisp first order logic. However, many applications require retrieval-like queries which return result objects associated with a degree of being relevant to the query. Historically, retrieval systems estimate relevance by exploiting hidden object semantics whereas query processing in database systems relies on matching select-conditions with attribute values. Thus, different mechanisms were developed for database and information retrieval systems. In consequence, there is a lack of support for queries involving both retrieval and database search terms. In this work, we introduce the quantum query language (QQL). Its underlying unifying theory is based on the mathematical formalism of quantum mechanics and quantum logic. Van Rijsbergen already discussed the strong relation between the formalism of quantum mechanics and information retrieval. In this work, we interrelate concepts from database query processing to concepts from quantum mechanics and logic. As result, we obtain a common theory which allows us to incorporate seamlessly retrieval search into traditional database query processing.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off