QoS-aware optimization of sensor network queries

QoS-aware optimization of sensor network queries The resource-constrained nature of mote-level wireless sensor networks (WSNs) poses challenges for the design of a general-purpose sensor network query processors (SNQPs). Existing SNQPs tend to generate query execution plans (QEPs) that are selected on the basis of a fixed, implicit expectation, for example, that energy consumption should be kept as small as possible. However, in WSN applications, the same query may be subject to several, possibly conflicting, quality-of-service (QoS) expectations concomitantly (for example maximizing data acquisition rates subject to keeping energy consumption low). It is also not uncommon for the QoS expectations to change over the lifetime of a deployment (for example from low to high data acquisition rates). This paper describes optimization algorithms that respond to stated QoS expectations (about acquisition rate, delivery time, energy consumption and lifetime) when making routing, placement, and timing decisions for in-WSN query processing. The paper shows experimentally that QoS-awareness offers significant benefits in responding to, and reconciling, diverse QoS expectations, thereby enabling QoS-aware SNQPs to generate efficient QEPs for a broader range WSN applications than has hitherto been possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

QoS-aware optimization of sensor network queries

Loading next page...
 
/lp/springer_journal/qos-aware-optimization-of-sensor-network-queries-VIqWd4Zbpa
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0300-z
Publisher site
See Article on Publisher Site

Abstract

The resource-constrained nature of mote-level wireless sensor networks (WSNs) poses challenges for the design of a general-purpose sensor network query processors (SNQPs). Existing SNQPs tend to generate query execution plans (QEPs) that are selected on the basis of a fixed, implicit expectation, for example, that energy consumption should be kept as small as possible. However, in WSN applications, the same query may be subject to several, possibly conflicting, quality-of-service (QoS) expectations concomitantly (for example maximizing data acquisition rates subject to keeping energy consumption low). It is also not uncommon for the QoS expectations to change over the lifetime of a deployment (for example from low to high data acquisition rates). This paper describes optimization algorithms that respond to stated QoS expectations (about acquisition rate, delivery time, energy consumption and lifetime) when making routing, placement, and timing decisions for in-WSN query processing. The paper shows experimentally that QoS-awareness offers significant benefits in responding to, and reconciling, diverse QoS expectations, thereby enabling QoS-aware SNQPs to generate efficient QEPs for a broader range WSN applications than has hitherto been possible.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2013

References

  • STREAM: the stanford stream data manager
    Arasu, A; Babcock, B; Babu, S; Datar, M; Ito, K; Motwani, R; Nishizawa, I; Srivastava, U; Thomas, D; Varma, R; Widom, J
  • A tutorial on geometric programming
    Boyd, S; Kim, S; Vandenberghe, L; Hassibi, A

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off