Pyramidal cell-selective GluN1 knockout causes impairments in salience attribution and related EEG activity

Pyramidal cell-selective GluN1 knockout causes impairments in salience attribution and related... Schizophrenia is a disabling psychiatric disease characterized by symptoms including hallucinations, delusions, social withdrawal, loss of pleasure, and inappropriate affect. Although schizophrenia is marked by dysfunction in dopaminergic and glutamatergic signaling, it is not presently clear how these dysfunctions give rise to symptoms. The aberrant salience hypothesis of schizophrenia argues that abnormal attribution of motivational salience to stimuli is one of the main contributors to both positive and negative symptoms of schizophrenia. The proposed mechanisms for this hypothesis are overactive striatal dopaminergic and hypoactive glutamatergic signaling. The current study assessed salience attribution in mice (n = 72) using an oddball paradigm in which an infrequent stimulus either co-occurred with shock (conditioned group) or was presented alone (non-conditioned group). Behavioral response (freezing) and electroencephalogram (whole brain and amygdala) were used to assess salience attribution. Mice with pyramidal cell-selective knockout of ionotropic glutamate receptors (GluN1) were used to reproduce a prominent physiological change involved in schizophrenia. Non-conditioned knockout mice froze significantly more in response to the unpaired stimulus than non-conditioned wild-type mice, suggesting that this irrelevant cue acquired motivational salience for the knockouts. In accordance with this finding, low-frequency event-related spectral perturbation was significantly increased in non-conditioned knockout mice relative to both conditioned knockout and non-conditioned wild-type mice. These results suggest that pyramidal cell-selective GluN1 knockout leads to inappropriate attribution of salience for irrelevant stimuli as characterized by abnormalities in both behavior and brain circuitry functions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Pyramidal cell-selective GluN1 knockout causes impairments in salience attribution and related EEG activity

Loading next page...
 
/lp/springer_journal/pyramidal-cell-selective-glun1-knockout-causes-impairments-in-salience-RZPQ7wWFdZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
D.O.I.
10.1007/s00221-017-5152-8
Publisher site
See Article on Publisher Site

Abstract

Schizophrenia is a disabling psychiatric disease characterized by symptoms including hallucinations, delusions, social withdrawal, loss of pleasure, and inappropriate affect. Although schizophrenia is marked by dysfunction in dopaminergic and glutamatergic signaling, it is not presently clear how these dysfunctions give rise to symptoms. The aberrant salience hypothesis of schizophrenia argues that abnormal attribution of motivational salience to stimuli is one of the main contributors to both positive and negative symptoms of schizophrenia. The proposed mechanisms for this hypothesis are overactive striatal dopaminergic and hypoactive glutamatergic signaling. The current study assessed salience attribution in mice (n = 72) using an oddball paradigm in which an infrequent stimulus either co-occurred with shock (conditioned group) or was presented alone (non-conditioned group). Behavioral response (freezing) and electroencephalogram (whole brain and amygdala) were used to assess salience attribution. Mice with pyramidal cell-selective knockout of ionotropic glutamate receptors (GluN1) were used to reproduce a prominent physiological change involved in schizophrenia. Non-conditioned knockout mice froze significantly more in response to the unpaired stimulus than non-conditioned wild-type mice, suggesting that this irrelevant cue acquired motivational salience for the knockouts. In accordance with this finding, low-frequency event-related spectral perturbation was significantly increased in non-conditioned knockout mice relative to both conditioned knockout and non-conditioned wild-type mice. These results suggest that pyramidal cell-selective GluN1 knockout leads to inappropriate attribution of salience for irrelevant stimuli as characterized by abnormalities in both behavior and brain circuitry functions.

Journal

Experimental Brain ResearchSpringer Journals

Published: Jan 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off