Puzzling Chromosome Behavior in Triploid Females of Drosophila melanogaster

Puzzling Chromosome Behavior in Triploid Females of Drosophila melanogaster Based on a particular formation of the chromocenter and trivalents in triploid Drosophila females, as well as on asynapsis in pericentromeric regions (which is a result of trivalent competition), an explanation for the increased frequency of crossing over and nonrandom segregation of the X chromosomes and autosomes in the first meiotic division is suggested. It is proposed that a delay in pairing of the pericentromeric heterochromatic chromosome regions combined into a single chromocenter leads to the following: (1) formation of the heteroduplex structures (X structures) takes more time and, consequently, their number and the frequency of crossing over in the paired chromosome regions increases; (2) in nonhomologous chromosomes, the chromocentral connections, which normally degrade in prometaphase, are retained to fulfill a function of coorientation during the first meiotic division. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Puzzling Chromosome Behavior in Triploid Females of Drosophila melanogaster

Loading next page...
 
/lp/springer_journal/puzzling-chromosome-behavior-in-triploid-females-of-drosophila-BvnlHISdWK
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1025370504626
Publisher site
See Article on Publisher Site

Abstract

Based on a particular formation of the chromocenter and trivalents in triploid Drosophila females, as well as on asynapsis in pericentromeric regions (which is a result of trivalent competition), an explanation for the increased frequency of crossing over and nonrandom segregation of the X chromosomes and autosomes in the first meiotic division is suggested. It is proposed that a delay in pairing of the pericentromeric heterochromatic chromosome regions combined into a single chromocenter leads to the following: (1) formation of the heteroduplex structures (X structures) takes more time and, consequently, their number and the frequency of crossing over in the paired chromosome regions increases; (2) in nonhomologous chromosomes, the chromocentral connections, which normally degrade in prometaphase, are retained to fulfill a function of coorientation during the first meiotic division.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off