Puroindolines: the molecular genetic basis of wheat grain hardness

Puroindolines: the molecular genetic basis of wheat grain hardness The variation in grain hardness is the single most important trait that determines end-use quality of wheat. Grain texture classification is based primarily on either the resistance of kernels to crushing or the particle size distribution of ground grain or flour. Recently, the molecular genetic basis of grain hardness has become known, and it is the focus of this review. The puroindoline proteins a and b form the molecular basis of wheat grain hardness or texture. When both puroindolines are in their `functional' wild state, grain texture is soft. When either one of the puroindolines is absent or altered by mutation, then the result is hard texture. In the case of durum wheat which lacks puroindolines, the texture is very hard. Puroindolines represent the molecular-genetic basis of the Hardness locus on chromosome 5DS and the soft (Ha) and hard (ha) alleles present in hexaploid bread wheat varieties. To date, seven discrete hardness alleles have been described for wheat. All involve puroindoline a or b and have been designated Pina-D1b and Pinb-D1b through Pinb-D1g. A direct role of a related protein, grain softness protein (as currently defined), in wheat grain texture has yet to be demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Puroindolines: the molecular genetic basis of wheat grain hardness

Loading next page...
 
/lp/springer_journal/puroindolines-the-molecular-genetic-basis-of-wheat-grain-hardness-0JPIWpTwmg
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014837431178
Publisher site
See Article on Publisher Site

Abstract

The variation in grain hardness is the single most important trait that determines end-use quality of wheat. Grain texture classification is based primarily on either the resistance of kernels to crushing or the particle size distribution of ground grain or flour. Recently, the molecular genetic basis of grain hardness has become known, and it is the focus of this review. The puroindoline proteins a and b form the molecular basis of wheat grain hardness or texture. When both puroindolines are in their `functional' wild state, grain texture is soft. When either one of the puroindolines is absent or altered by mutation, then the result is hard texture. In the case of durum wheat which lacks puroindolines, the texture is very hard. Puroindolines represent the molecular-genetic basis of the Hardness locus on chromosome 5DS and the soft (Ha) and hard (ha) alleles present in hexaploid bread wheat varieties. To date, seven discrete hardness alleles have been described for wheat. All involve puroindoline a or b and have been designated Pina-D1b and Pinb-D1b through Pinb-D1g. A direct role of a related protein, grain softness protein (as currently defined), in wheat grain texture has yet to be demonstrated.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off