Purity of silicon: with great effect on its performance in graphite–silicon anode materials for lithium-ion batteries

Purity of silicon: with great effect on its performance in graphite–silicon anode materials for... Ferrosilicon, industrial grade silicon, solar grade silicon, and electronic grade silicon were ball-milled to form four types of silicon powders, which were mixed with graphite powders at weight ratio of 5:95, respectively, for being used as graphite–silicon anode materials in lithium-ion batteries (LIBs). The effect of the purity of silicon on its electrochemical performance in graphite–silicon anode materials for LIBs was investigated by the cycle and rate tests. Results show that silicon with higher purity shows higher capacity, better cycle, and rate performance. In addition, the significant difference in capacity of the four graphite–silicon anodes with different purities of silicon is not completely resulted from the content of silicon materials, and the influence of the impurity inside the silicon cannot be ignored as well. The sample prepared from electronic grade silicon presents the highest first discharge capacity, which is 440.5 mAh g−1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Purity of silicon: with great effect on its performance in graphite–silicon anode materials for lithium-ion batteries

Loading next page...
 
/lp/springer_journal/purity-of-silicon-with-great-effect-on-its-performance-in-graphite-Cor0JtSu66
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-017-1190-0
Publisher site
See Article on Publisher Site

Abstract

Ferrosilicon, industrial grade silicon, solar grade silicon, and electronic grade silicon were ball-milled to form four types of silicon powders, which were mixed with graphite powders at weight ratio of 5:95, respectively, for being used as graphite–silicon anode materials in lithium-ion batteries (LIBs). The effect of the purity of silicon on its electrochemical performance in graphite–silicon anode materials for LIBs was investigated by the cycle and rate tests. Results show that silicon with higher purity shows higher capacity, better cycle, and rate performance. In addition, the significant difference in capacity of the four graphite–silicon anodes with different purities of silicon is not completely resulted from the content of silicon materials, and the influence of the impurity inside the silicon cannot be ignored as well. The sample prepared from electronic grade silicon presents the highest first discharge capacity, which is 440.5 mAh g−1.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Aug 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off