Purification and Characterization of a Novel Chemorepellent Receptor from Tetrahymena thermophila

Purification and Characterization of a Novel Chemorepellent Receptor from Tetrahymena thermophila Chemosensory transduction and adaptation are important aspects of signal transduction mechanisms in many cell types, ranging from prokaryotes to differentiated tissues such as neurons. The eukaryotic ciliated protozoan, Tetrahymena thermophila, is capable of responding to both chemoattractants (O'Neill et al., 1985; Leick, 1992; Kohidai, Karsa & Csaba, 1994, 1995) and chemorepellents (Francis & Hennessey, 1995; Kuruvilla, Kim & Hennessey, 1997). An example of a nontoxic, depolarizing chemorepellent in Tetrahymena is extracellular lysozyme (Francis & Hennessey, 1995; Hennessey, Kim & Satir, 1995). Lysozyme is an effective chemorepellent at micromolar concentrations, binds to a single class of externally facing membrane receptors and prolonged exposure (10 min) produces specific chemosensory adaptation (Kuruvilla et al., 1997). We now show that this lysozyme response is initiated by a depolarizing chemoreceptor potential in Tetrahymena and we have purified the membrane lysozyme receptor by affinity chromatography of solubilized Tetrahymena membrane proteins. The solubilized, purified protein is 42 kD and it exhibits saturable, high affinity lysozyme binding. Polyclonal antibodies raised against this 42 kD receptor block the in vivo lysozyme chemoresponse. This is not only the first time that a chemoreceptor potential has been recorded from Tetrahymena but also the first time that a chemorepellent receptor has been purified from any unicellular eukaryote. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Purification and Characterization of a Novel Chemorepellent Receptor from Tetrahymena thermophila

Loading next page...
 
/lp/springer_journal/purification-and-characterization-of-a-novel-chemorepellent-receptor-3JT3Y7HCiL
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900341
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial