Pulsed light sintering of silver nanoparticles for large deformation of printed stretchable electronics

Pulsed light sintering of silver nanoparticles for large deformation of printed stretchable... Growth of printed electronics has increased the interest in the nanoparticle inks. Research on flexible electronics has expanded not only due to inherent benefits of producing flexible products but also for its high-throughput manufacturability, such as roll-to-toll (R2R) process. Conventional sintering methods cause microcracks and voids in the sintered nanoink film, which lead to subpar performance, and are not suitable for the high-throughput R2R production. Furthermore, these methods are incompatible with many polymer substrates used in flexible electronics due to their low thermal budget. In this study, we present an alternative method utilizing an intense pulsed light (IPL) with a xenon flash lamp to sinter silver nanoink on a polymer substrate. The IPL method is capable of selectively sintering the silver nanoink in milliseconds without damaging the polymer substrates. The silver nanoink was stencil printed on a polydimethylsiloxane (PDMS) specimen. Samples were prepared using five different sintering conditions and tested under uniaxial strain. Three IPL sintering conditions were compared against a non-sintered (NS) and an oven-sintered (OS) conditions. The IPL-sintered samples show a significant improvement in tensile test over NS and OS samples. Samples sintered at 20 J/cm2 of flash energy density and 10 ms of duration were stretched up to 27% strain before losing electrical conductivity. Scanning electron microscopy (SEM) confirms these results showing a reduction in porosity of the sintered nanoink as compared to NS and OS samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Composites and Hybrid Materials Springer Journals

Pulsed light sintering of silver nanoparticles for large deformation of printed stretchable electronics

Loading next page...
 
/lp/springer_journal/pulsed-light-sintering-of-silver-nanoparticles-for-large-deformation-aJwTrj98SA
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Materials Engineering; Polymer Sciences
ISSN
2522-0128
eISSN
2522-0136
D.O.I.
10.1007/s42114-017-0012-3
Publisher site
See Article on Publisher Site

Abstract

Growth of printed electronics has increased the interest in the nanoparticle inks. Research on flexible electronics has expanded not only due to inherent benefits of producing flexible products but also for its high-throughput manufacturability, such as roll-to-toll (R2R) process. Conventional sintering methods cause microcracks and voids in the sintered nanoink film, which lead to subpar performance, and are not suitable for the high-throughput R2R production. Furthermore, these methods are incompatible with many polymer substrates used in flexible electronics due to their low thermal budget. In this study, we present an alternative method utilizing an intense pulsed light (IPL) with a xenon flash lamp to sinter silver nanoink on a polymer substrate. The IPL method is capable of selectively sintering the silver nanoink in milliseconds without damaging the polymer substrates. The silver nanoink was stencil printed on a polydimethylsiloxane (PDMS) specimen. Samples were prepared using five different sintering conditions and tested under uniaxial strain. Three IPL sintering conditions were compared against a non-sintered (NS) and an oven-sintered (OS) conditions. The IPL-sintered samples show a significant improvement in tensile test over NS and OS samples. Samples sintered at 20 J/cm2 of flash energy density and 10 ms of duration were stretched up to 27% strain before losing electrical conductivity. Scanning electron microscopy (SEM) confirms these results showing a reduction in porosity of the sintered nanoink as compared to NS and OS samples.

Journal

Advanced Composites and Hybrid MaterialsSpringer Journals

Published: Nov 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off